ESTUDIO HIDROGEOLOGICO DE LA ZONA SUROESTE DE GRAN CANARIA

TOMO III. ANEJOS

ESTUDIO HIDROGEOLOGICO DE LA ZONA SUROESTE DE GRAN CANARIA

INDICE

TOMO III ANEJOS

Anejo 0.	nventario	de i	puntos
----------	-----------	------	--------

Anejo I. Fichas de Producción de Agua por Sistemas no Convencionales

Anejo II. Datos de escorrentia

Anejo III. Datos climatológicos

Anejo IV. Cortes hidrogeológicos

Fig. IV-1. Corte I-I' Barranco de Tasarte - Corte II-II' Barranco de Veneguera

Fig. IV-2. Corte III-III' Barranco de Mogán - Corte IV-IV' Barranco de

Arguineguín

Fig. IV-3. Corte V-V' Perimetral Norte

Fig. IV-4. Corte VI-VI' Perimetral Sur

Anejo V. Ensayos de bombeo

Fig. A.1. Ensayo Cañada Honda. Bombeo. Jacob

Fig. A.2. Ensayo Cañada Honda. Recuperación. Jacob

Fig. A.3. Ensayo Cañada Honda. Recuperación. Theis

Fig. B.1. Ensayo Goteras. Bombeo. Jacob

Fig. B.2. Ensayo Goteras. Recuperación. Jacob

Fig. B.3. Ensayo Goteras. Recuperación. Theis

V-1. Fichas

V-2. Datos

V-3. Fichas

V-4. Datos

ANEJO 0

Planos de inventario actualizados

NOTA: Las fichas de inventario están disponibles en las Oficinas del ITGE en Las Palmas de Gran Canaria 5V MASPALOMAS

DATOS ESTADÍSTICOS Y ADMINISTRATIVOS

ENTIDAD

NOMBRE

P. LAS PALMAS

M. HOGAR

M. HOGAR

JAR BARTOLORE DE TIMJANA

E.S. El Casilla

E.S. El Tablero

E.S. Maspalcomas

E.S. Montaña Blanca

E.S. Montaña Blanca

E.S. Montaña Ce la Data

E.S. Playa del Inglés

E.S. Playa del Inglés

E.S. Playa del Inglés

E.S. Sen Aquetin

De C.P. C.P.J. Cabara de Partels Justicial

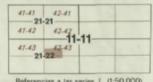
M. Miniscos

C.M. Castad Celestore

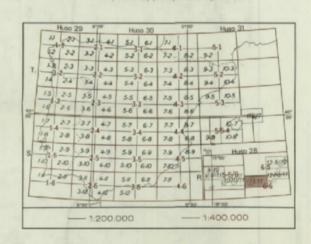
E.C. Entada Celestore

E.C. Entada Celestore

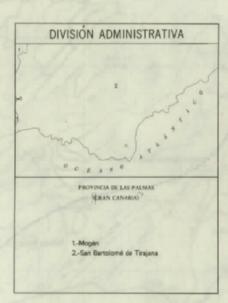
Nombre C Arguineguin 2 Besudo 3 Mespalomas da 1 Mispalomas a 3 Tabelbes 3	4	47.356 41.134 43.424	Y 3.074.4 3.071.9 3.067.8 3.071.1 3.075.8	81 84 41	Z 393 70 66 57 409
Besudo 3 Maspaiomas xx 1 Maspaiomas a 3	4	47.356 41.134 43.424	3.071.9 3.067.8 3.071.14	81 84 41	70 66 57
Maspalomas o 1 Maspalomas a 3	4	41.134 43.424	3.067.8	84 41	66 57
Maspalomas a 3	4	43,424	3.071.14	41	57
Tabalbas 3	4	49.110	3.075.8	98	409


SERVICIO GEOGRÁFICO DEL EJÉRCITO

CARTOGRAFIA MILITAR DE ESPAÑA


Serie 5V. Escala 1:25.000

Hoja n.º 83-86;83-87


MASPALOMAS

Referencias a las series L. (1:50.000 C (1:100.000) y 2C (1:200.000)

DATOS PARA EL CENTRO DE LA HOJA Convergencia de Cuadrícula ω = 0°16' (0°30') (5°°) No se hace figurar la declinación debido a las anormalidades que de dicho valor satano en las Islas de este Archariélago.

DESIGNACIÓN Y NUMERACIÓN DE HOJAS 1.—Además de la indicación de escalas o serie, ceda hoja se designa con dos números: el primero, que determina la columna, y el segundo, la file de un cuadricusilede que abarca todo el territorio Nacional. 2.—Para conocer el número de la hhoja situada al S. o al N. (al E. o al O.) de una dada, se summará o restará una unidad al segundo (o primer) número. 2.—Para conocer el número de la hoja ode escala inmediata inferior (denominador mayor) que comprenda a una dada, bastará divider por dos cada uno de sus números, tomando los cocientes por exceso cuando no sean enteros.

4.-Para conocer los números de las titojas de escala immediata superior (denominador menor) contravidas en una dada se multiplicará por dos cada uno de los números de la hoja, obtenidendos los correspondientes a i su cuarto S.E. los números de los restentes cuartos se obtendráin según el apartado 2.

MASP	MASPALOMAS 83-86;					
DESIGNACIÓN DE LA ZONA 28 R	EJEMPLO DE DESIGNA CON APROXIMACIÓN					
Identificación del	NOMBRE DEL PUNTO A M.	ASPALOMAS				
cuadrado de 100 Km.	Básquese la barra vertical más pr del parto y lánese los enforces gar Estimose, en décimos gartes del dricula, la distancia de la barra al 2. Básquese la barra horizontal más po punto y Jásseo los colerences grando Estimosa, en décimas partes del dricula, la distancia de la barra al	ndes que la rotulan. intervalo de la cua- punto. fixima por debajo del in que la rotulan, intervalo de la cua-	4 3 4 7 1			
	DESIGNACIÓN DEL P	UNTO	434711			
Las cifras pequeñas del recuadro se utilizan para	Anteplinganse las letras que designa		DR 434711			

CARRETERAS

GC-1-Autopista Las Palmas de Gran Canaria a Maspalomas C-812-De Las Palmas al Puerto de Mogán

4	4 ///
	PUNTOS DE AGUA
 DIVISION DE LA ZONA DE ESTUDIO EN HOJAS DEL SERVICIO GEOGRAFICO DEL EJERCITO A ESCALA 1:25.000 DENOMINACION Y NUMERO	SONDEO PIEZOMETRO MANANTIAL
 BORDE DE LA CALDERA DE TEJEDA	O POZO GALERIA
 LIMITE DE LA ZONA DE ESTUDIO	POZO CON GALERIA POZO CON SONDEO POZO CON GALERIA Y SONDEO

ESTUDIO HIDROGEOLOGICO DE LA ZONA SUROESTE DE GRAN CANARIA

PLANO DE SITUACION DE PUNTOS DE AGUA

EN MASPALOMAS (83-86;83-87)

COMPROBADO AUTOR ESCALA
V. RUIZ A. ARANDILLA 1:25 000

SAN NICOLAS DE TOLENTINO 81-84; 82-84

> MOGAN 82-85

PROYECTO

SAN BARTOLOME DE TIRAJANA 83 - 84

CLAVE

GA-9048 ANEJO O

PLANO 6

GEO RESERVA

SANTA/LUCIA 83/85

VÉRTICES								
Nombre	0	Х	Y	Z				
Cruz de Piedra Parchel	2 3	426.320 433.712	3.076.223 3.069.512	183				

---- 1:200.0001

SERVICIO GEOGRÁFICO DEL EJÉRCITO

CARTOGRAFIA MILITAR DE ESPAÑA

Serie 51V. Escala 1:25.000

Hoja n.º 82-86

ARGUINEGUÍN

41.41 442.41 21.21 442.42 41.42 442.42 11.41 442.43 21.22 442.43

DIVISIÓN ADMINISTRATIVA

1.-Mogán 2.-San Bartolomé de Tirajana

CARRETERAS

C-810-Las Palmas de Gran Canaria a Puerto de Mogán

C-812-Puerto de Mogán a Las Palmas de Gran Canaria

(Circunvalación por el Norte)

(Circunvalación por el Sur)

Además de la indicacción de escala o serie, cada hoje se de-signa con dos númeross: el primero, que determina la columna, y el segundo, la fila dels un cuadriculado que abarca todo el territorio Nacional. 2—Para conocer el número de la hoja zituada al S. o al N. (al E. o al Q.) de una cidada, se sumerá o resterá una unidad al segundo (o primer) nnúmero. 3.—Para conocer el númerco de la hoje de escala inmediata inferior (denominador mayor) guue comprenda a una dada: bastará dividir por dos cada uno dde sus números tomando los cocientes por exceso cuando no sean enteros. 4.— Para conocer los números de los hojas de escala inmediata superior (denominador menor) contenidas en una dada se multiplicará por das ceada uno de los números de la hoja, obtenidodos los correspondientes a su cuarto SE los números de los restantes cuartos se obtendrán según el apartado 2.

ARO	GUINEGUÍN	32-8	6	
DESIGNACIÓN DE LA ZONA 28 R	EJEEMPLO DE DESIGNACIÓN DE UN CON APROXIMACIÓN DE 100 ME	PUNTO)	
Identificación del	NOMBRE DEL PUNTO A CRUZ DE	PIED	RA	
DR	Bioqueste la barra vertical mais présime is le loquie del quatito y Monce los sobseros grandes que la rutala Estimesate, no décimes partes del internato de la cu- dicialo. La dicatacia de la barra al punto. 2. Bioqueste la burra horocosta más próxima por debaja punto y y Monce los nómeros grandes que la robulas. Estimesate, en décimas partes del intervalo de la cu- diciola, la distancia de la barra al puedo.	n. 26	76	
	DESIGNACIÓN DEL PUNTO	2.6	376	
Las cifras pequeñas del recuadro se utilizan para el cálculo. Úsense sólo	Anteologogasse les letras que designan el cuadrado de los 100 X Kin. si hay incertidumbre en su determinación.	DR	6376	
los números grandes.	Anteologigiste la designación de la Zone, si hay incerti dumbre e en su determinación.	2880	2880825376	

DESIGNACIÓN Y NUMERACIÓN DE HOJAS

SAN BARTOLOME DE TIRAJANA 83 - 84

SANTA/LUCIA 83/-85

MASPALOMAS 83-86;83-87

DIVISION DE LA ZONA DE ESTUDIO EN HOJAS DEL SERVICIO GEOGRAFICO DEL EJERCITO A ESCALA 1:25.000 DENOMINACION Y NUMERO

DIVISION EN HOJAS A E.1:50000 NOMBRE Y NUMERO

MOGAN 82-85

ARGUINEGUIN 82-86

BORDE DE LA CALDERA DE TEJEDA

---- LIMITE DE LA ZONA DE ESTUDIO

♦ SONDEO

@ PIEZOMETRO

5 MANANTIAL

O POZO ☐ GALERIA

O POZO CON GALERIA

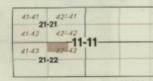
- POZO CON SONDEO

POZO CON GALERIA Y SONDEO

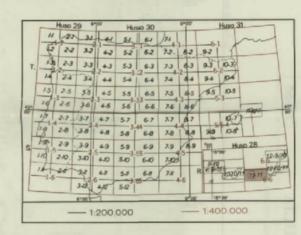
3	Instituto Te GeoMinero	cnológico de España				
	PROYECTO ESTUDIO HIG	DROGEOLOGICO	DE LA ZONA SU	PROESTE DE GR	AN CANARIA	CLAVE GA-9048
	PLA	ANEJO O PLANO 5				
	DIBUJADO S: GUTIERREZ	FECHA ENERO-92	COMPROBADO V. RUIZ	AUTOR A. ARANDILLA	ESCALA 1:25 000	GEO SESSE

DATOS PARA EL CENTRO DE LA HOJA Convergencia de Cuadrícula m = 0.51, (0.39, (0.0))

No se hace figurar la declinación debido a las anormalidades que de dicho valor existen en las Islas de este Archipiélago.


ARGUINEGUÍN

CARTOGRAFIA MILITAR DE ESPAÑA

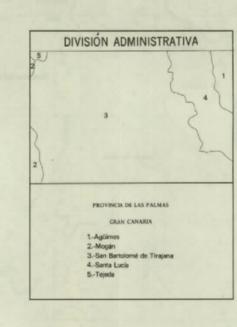

Serie 5V. Escala 1:25.000

Hoja n.º 83-85

SANTA LUCÍA

Referencias a: las series L. (1:50.000) C (1:100.000) y 2C (1:200.000)

DESIGNACIÓN Y NUMERACIÓN DE HOJAS


- Además de la indicación de escala o serie, cada hoje se de-signa con dos números:: el primero, que determine le columna, y el segundo, la fila de un cuadriculado que abarca todo el territorio Necional.
- Para conocer el número de la hoja situada al S. o al N. (al E. o al O.) de una citada, se sumaré o restará una unidad al segundo (o primer) número.
- 3.—Para conocer el número: de la hoja de escala inmediata inferior (denominador mayor) que comprenda a una dada. bastará divi-dir por dos cada uno de sua números, tomando los cocientes por exceso cuando no sean enteros.
- 4.— Para conocer los números de los hejas de escala inmediata superior (denominador menor) contenidas en una dada se multiplicará por dos cada uno de los números de la hoja, obtenidados hos correspondientes a su cuertos E los números de los restantes cuertos se obtendrán según el apartado 2.

SAI	NTA LUCÍA	83	-8	5
SIGNACIÓN DE LA ZONA 28 R	EJEMPLO DE DESIGNACIÓN DE (CON APROXIMACIÓN DE 100			
Identificación del	NOMIBRE DEL PUNTO	GARIT	Ά	
padrado de 100 Km.	Sciencese le barse vertical mafo prôsime a la del puntido y Monse los números grandes que la Estimesa. en Sciences partes del intervalo de décala. la dichancia de la barse al punto. 2. Bioguesse la barse horizontal más prósima por de punto y y Manse los solmenos grandes que la rel Estimesach en Science parte de la barse al puesto. dicula. la distancia de la barse al puesto.	rotulan. In cua- ebajo del fulan.	46	82
	DESIGNACIÓN DEL PUNTO		467	823
s cifras pequeñas del cuadro se utilizan para cálculo. Úsense sólo s números grandes.	Antepónggame las letras que designan el cuadrad los 100 KKm. si hay incertidumbre en su defarm		DR 4 67 823	
numeros grandes.	Antepônggase la designación de la Zona, si hay dumbre een su determinación.	incerti-	288DR	467823

No se hace figurar la declinación debido a las anormalidades que de dicho valor existen en las Islas de este Archipiélago.

VÉRTICES

Nombre

Cruz de las Vueltas a

Morros de las Vacas

Puercos

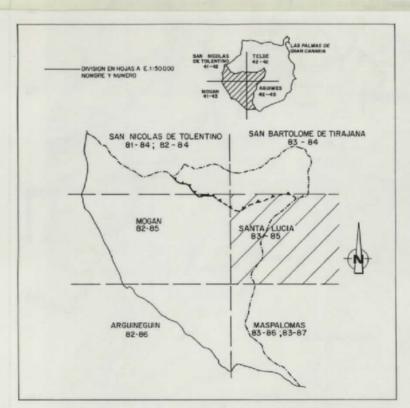
Santidad

Teheral

Santa Lucia »

O. X Y Z

3 446.077 3.083.511 1131


3 448.048 30.87.229 966 2 446.732 3.082.376 1.099 3 442.522 3.086.853 1.433 2 445.991 3.080.695 1.001

3 446.822 3.087554 701

2 437.255 3.084.398 1.193 3 450.375 3.085.357 912

3 450.375 3.085.357

	CARRETERAS
C-8	15 - De Tejeda a Arinaga por San Bartolomé d
	Tirajana y Agūimes.

PUNTOS DE AGUA

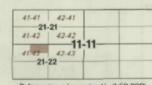
DIVISION DE LA ZONA DE ESTUDIO EN HOJAS DEL SERVICIO GEOGRAFICO DEL EJERCITO A ESCALA 1:25.000 DENOMINACION Y NUMERO

BORDE DE LA CALDERA DE TEJEDA

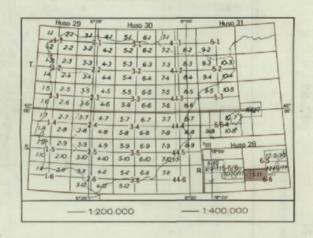
- · - · LIMITE DE LA ZONA DE ESTUDIO

- PIEZOMETRO
 MANANTIAL
- O POZO
- GALERIA
- O POZO CON GALERIA - POZO CON SONDEO

- POZO CON GALERIA Y SONDEO


Instituto Tecnológico GeoMinero de España CLAVE ESTUDIO HIDROGEOLOGICO DE LA ZONA SUROESTE DE GRAN CANARIA GA-9048 ANEJO O PLANO DE SITUACION DE PUNTOS DE AGUA EN SANTA LUCIA (83-85) PLANO 4 GEO RESE COMPROBADO AUTOR ESCALA V. RUIZ A. ARANDILLA 1:25 000 DIBUJADO FECHA S. GUTIERREZ ENERO- 92

CARTOGRAFIA MILITAR DE ESPAÑA


Serie 5V. Escala 1:25.000

Hoja n.º 82-85

MOGÁN

Referencias a las series I.L. (1:50.000) C (1:100.000) y 2C (11:200.000)

CARRETERAS C-810-De Las Palmas de Gran Canaria al Puerto de Mogán (Circunvalación por el Norte) C-811-De Las Palmas de Gran Canaria a Mogán (Centro)

VÉRTICES 0. X Y Z Nombre 428.314 3.084.944 548 Cruz de Mogán : 430.086 3.083.600 932 Guirre 429.081 3.082.680 Laderones 428.876 3.084.439 250 2 421.987 3.087.572 892 3 426.165 3.081.839 602

Provincia
Capital de Provincia
Cabeza de Paredo Judicial
Municipia
Entidad Colectiva
Entidad Singular

DATOS ESTADÍSTICOS Y ADMINISTRATIVOS

NOMBRE

LAS PALMAS
MOGÁN

HOGÁN

EI Barranquillo Andrés

EI Palmito

EI Pé de la Cuesta

La Playa de Veneguera

Las Casillas

Las Burrillas

Las Casas de Veneguera

Los Navarros

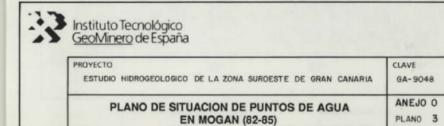
Soria

Tabalbaies

JAN BARTOLONÉ DE TIRAJANA

SAN NICOLÁS DE TOLENTINO

TEJEDA



DESIGNACIÓN Y NUMERALCIÓN DE HOJAS 1.-Además de la indicación de escala i o serie, cada hoja se designa con dos números: el primero, (que determina la columna, y el segundo, la fila de un cuadricuillado que abarca, todo el territorio Nacional.

2.—Para conocer el número de la hicia zituada al S. o al N. (al E. o al O.) de una dada, se summará o restará una unidad

- 3.—Para conocer el número de la haje da ascala immediata inferior (denominador mayor) que comprenda a una dada. bastará divi-dir por dos cada uno de sus números; tomando los cocientas por exceso cuando no sean enteros.
- 4.—Para conocer los números de las lhojas de escale inmediata superior (denominador menor) contletidas en una dada se multiplicará por dos cada uno de los números de la hoja, obtenidados los correspondientes a las cuarto SE. Dos números de los restantes cuartos se obtendráin según el apartado 2.

- 1	MOGÁN 8	2-85
DESIGNACIÓN DE LA ZONA 28 R	EJEMPLO DE DESIGNACIÓN DE UN F CON APRROXIMACIÓN DE 100 MET	
Identificación del	NOMBRE DEL I PUNTO A GUI	RRE
cuadrado de 100 Km	Bitopose la farra vertical más prósima a la tropienta del questo y látima i los edimenos grandes que la robalan. Estimese, es dificialmes partes del intervalo de la casidicala. Ja distancia si en la herra al puerta. 2. difuquese la barra haroccental más prósima por debajo del puerto y Mansa las inflorense grandes que la robalan. Estimene, es dicuminas partes del intervallo de la cuadrícula, la dicianca i de la barra al guesto.	30
	DESIGNAACIÓN DEL PUNTO	3008
Las cifras pequeñas del recuadro se utilizan para el cálculo. Usense sólo	Antapónganse las letritos que designen el caudrado de los 100 Km. si hay i incertidumbre en su determinación.	DR 3006
los números grandes.	Antepóngane la designificación de la Zona, si hay incerti- dumbre en su deterministición.	28KSR300

DIBUJADO FECHA COMPROBADO AUTOR ESCALA S:GUTIERREZ ENERO - 92 V. RUIZ A. ARANDILLA 1:25 000

DIVISION EN HOJAS A E.1:50000 NOMBRE Y NUMERO

ARGUINEGUIN

- DIVISION DE LA ZONA DE ESTUDIO EN HOJAS DEL SERVICIO GEOGRAFICO DEL EJERCITO A ESCALA 1:25.000 DENOMINACION Y NUMERO

BORDE DE LA CALDERA DE TEJEDA

---- LIMITE DE LA ZONA DE ESTUDIO

SAN NICOLAS DE TOLENTINO 81-84; 82-84

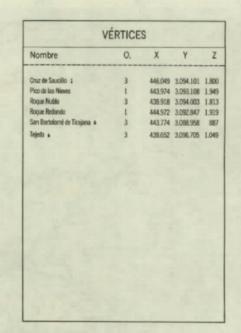
SAN BARTOLOME DE TIRAJANA

SANTA/ LUCIA 83/- 85

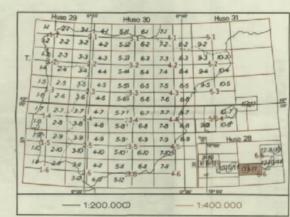
MASPALOMAS 83-86;83-87

PUNTOS DE AGUA

- POZO CON SONDEO POZO CON GALERIA Y SONDEO


GEO RESERVE

SONDED @ PIEZOMETRO 6 MANANTIAL O POZO


GALERIA O POZO CON GALERIA

Escala 1:25.000 Casco urbano. o Pozo. Fuente, Estanque. 500 0 1.000 1.500 xxx 💥 Tünel. Puente. Proyección U.T.M. Elipsoide Hayford
Altitudes referidas al nivel medio del mar en Las Palmas de Gran Caneria
Equidistancia de curvas 10 metros
Lomgitudes referidas al meridiano de Greenwich. Datum para todo el Archipielago "PICO DE LAS NIEVES"

DESIGNACIÓN IY NUMERACIÓN DE HOJAS

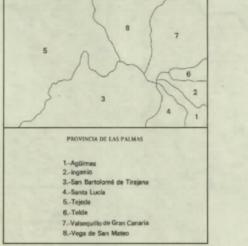
1.—Ademãs de la indicaeción de escela o serie, cada hoja se de-signa con dos númeroos: el primero, que determina la cofurma, y el segundo, la fila ade un cuadriculado que abarca todo el territorio Nacional.

Para conocer el núrmero de la hoje situada el S. o al N. (al E. o al O.) de unas dada, se sumará o restará una unidad

3.—Para conocar el númeiro de la haja de escafa immediata inferior (denominador mayor) grue comprenda a una dede, bastará divi-dir por dos cada uno de aus números, tomando los cocientes por exceso cuando no deem enteros.

4.—Para conocer los núlmeros de las hojas de escale inmediata superior (denominador menor) contenidas en una dada se multiplicará por dos citide uno de los números de la hoja, obteniêndose los correspondientes a su cuarto S. Elo números de los restantes cuartos se obtendrán según el apartado 2.

SERVICIO GEOGRAFICO DEL EJERCITO


CARTOGRAFIA MILITAR DE ESPAÑA

C-811 De Las Palmas a Mogán (Centro) C-815 De Ayacata al Puerto de Arinaga GC-520 De San Bartolomé de Tirajana a

CARRETERAS

SAN BARTOLOMÉ DE TIRAJANA 83-84 EJJEMPLO DE DESIGNACIÓN DE UN PUNTO CON APROXIMACIÓN DE 100 METROS NOMBRE DEL PUNTO & PICO DE LAS NIEVES Búscuerse la barra vertical más próxima a la icquierda del puanto y Kansa los números grandes que la rotulan. Estimenda, en dácimas partes del intervalo de la cua-drículas, la distancia de la barra al punho. DR Büsquenne la herra forizontal más pednima por debajo del punto y Masse los números grandes que la rotatan. Estimeste. en décimas partes del intervalo de la cua-driculax la distancia de la barra al punto. DESIGNACIÓN DEL PUNTO Las cifras pequeñas del recuadro se utilizas para el caficalo de el cálculo. Úseses sólo los números grandes. Associangue la desgración de la Zero. si hay inconsi-Antepdengase la designación de la Zona, si hay incerti-dundre t en su determinación.

Instituto Tecnológico GeoMinero de España

PROYECTO ESTUDIO HI	DROGEOLOGICO	DE LA ZONA SU	PROESTE DE GRA	AN CANARIA	CLAVE GA-9048
			UNTOS DE A		ANEJO O
EN	SAN BAHT	OLOME DE I	INAJANA (00	1-04)	I LANO

TELDE 42-42

SANTA/ LUCIA 83/- 85

MASPALOMAS 83-86;83-87

PUNTOS DE AGUA

♦ SONDEO

O POZO

☐ GALERIA O POZO CON GALERIA

@ PIEZOMETRO

MANANTIAL

- POZO CON SONDEO POZO CON GALERIA Y SONDEO

SAN BARTOLOME DE TIRAJANA

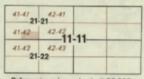
DIVISION EN HOJAS A E.1:50000 NOMBRE Y NUMERO

SAN NICOLAS DE TOLENTINO 81-84; 82-84

MOGAN 82-85

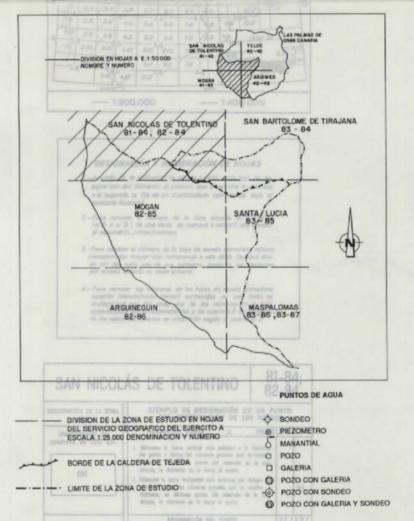
ARGUINEGUIN

DIVISION DE LA ZONA DE ESTUDIO EN HOJAS DEL SERVICIO GEOGRAFICO DEL EJERCITO A ESCALA 1:25.000 DENOMINACION Y NUMERO


BORDE DE LA CALDERA DE TEJEDA

---- LIMITE DE LA ZONA DE ESTUDIO

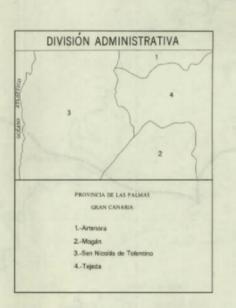
CARTOGRAFÍA MILITAR DE ESPAÑA


Serie 5V. Escala 1:25.000

Hoja n.º 81-84;82-84 SAN NICOLÁS DE TOLENTINO

Referencias a las series L. (1:50.000) C (1:100.000) y 2C (1:200.000)

	-	luso 2	9 6	00'	Hus	ю 30		0,00		Huso	31	
	H	27	31	M	34	61	121				m	
	6.2	2-2	3.2	42	5.2	6.2	7.2.	8-2	9-2	1		
T.	13	2.3	3.3	4-3	5-3	6-3	7.3	8.3	23	10.3		
-	14	23	34	44	5-4	64	7-4	84	94	104		1
-	15	2.5	7.5	4.5	5.5	6-5	7.5	8-5	195	10.5		
40*	19/	2.6	3-61	4-6	5.6	6.6	7.6	340	100	-3-	-	


Les elles pesse	Control Control	orn to term on dolor	and a company of		
Instituto Te GeoMinero	cnológico	tin, si hay beneficiantes o ma fi declimación da la	er in Mantacili.	#267907 SIDUSTNOT	
PROYECTO ESTUDIO HII	DROGEOLOGICO	DE LA ZONA SU	JROESTE DE GR	AN CANARIA	CLAVE GA-9048
			NTOS DE AG NO (81-84;82		ANEJO O
DIBUJADO S. GUTIERREZ	FECHA ENERO - 92	COMPROBADO V. RUIZ	AUTOR A.ARANDILLA	ESCALA 1:25 000	GEO SESSE

٧	ÉRTICE	S		
Nombre	0.	X	Υ	Z
Amurgar	2	419,384	3.094.399	790
nagua	1	426.709	3.090.783	1.426
San Nicolás de Tolentino a	3	423,269	3.095.737	64
Viso	3	425.443	3.093.701	997

CARRETERAS
C-810-De Las Palmas de Gran Canaria al Puerto de
Mogán (Norte)

ENTIDAD	NOMBRE	HABITANTES
	LICBILNIC	
P.	LAS PALMAS	756.353
M.	ARTENARA	930
M.	MOGÁN SAN NICOLÁS DE TOLENTINO	7.863
M. C.M.	San Nicolás de Tolentino	7.458
E.S.	Alberoon	143
E.S.	Artejévez	34
ES	Las Marciegas	374
E.S.	Los Espinos	1.408
E.S.	Los Molinos	342
E.8.	Mederos	100
E.S.	Tasarte	623
E.S.	Tasartico	81
E.S.	Tocadomên	83
M.	TEJEDA	2.187
E.S.	El Carrizal El Toscón	51 60
2.0.		
Los	datos astadísticos astán tomados del Ca	nao de 1981
P.	Provincia	
C.P.	Capital de Provincia	
C.P.J.	Cabeza de Partido Judicial-	
	Municipie	
M. C.M.	Capital de Municipio	

SAN NICOLÁS DE TOLENTINO 81-84;82-84

ANEJO I

Fichas de producción de agua por sistemas no convencionales

<u>Geol∕Vinero</u> de España	Nº DE ORDEN1.			
SITUACION: ISLA: GRAN CANARIA	ZONIFICACION :			
CROQUIS	TERMINO MUNICIPAL : MOGAN			
ACTUALMENTE SIN CONSTRUIR	HOJA TOPOGRAFICA: (1:25.000) ARGUINEGUIN (82-86)			
	COORDENADAS			
	XYZ			
	PARAJE : CASAS DE VENEGUERA			
ORIGEN DEL AGUA: AGUAS RESIDUALES				
	TECNICOS			
	100 3/45-			
PLANTA TIPO : DEPURADORA	CAPACIDAD DE PRODUCCION 400 m3/día			
SISTEMA AIREACION DIFUSORES SOPLANTES EN FONDO	PRODUCCION REAL 200 m ³ /día			
CONSUMO ENERGETICO / m ³	GRADO DE UTILIZACION			
UTILIZACION DEL AGUA				
ABASTECIMIENTO : POBLACION				
Nº HABITANTES	DOTACION			
	(Goteo)			
	VOLUMEN			
RES	SIDUOS			
TIPO LODOS Y FANGOS	VOLUMEN			
LUGAR DE VERTIDO RECOGIDA. EN CONTENEDO	OR Y TRANSPORTADA A VERTEDERO PLANTA DE			
R.S.U. DE JUAN GRANDE				

PARAMETROS	AGUA A DEPURAR	AGUA DEPURADA		
FISICOS				
Conductividad (µs/cm)				
Dureza (ppm CaCO ₃)				
pH	1			
Residuo seco (ppm)				
CATIONES	!			
Litio (Li*)				
Sodio (Na*)				
Potasio (K ⁺)				
Calcio (Ca ⁺⁺)				
Magnesio (Mg ⁺⁺)				
Amonio (NH ₄ +)				
ANIONES				
Sulfatos (SO ₄ -)				
Cloruros (Ct)				
Carbonatos (CO ₃ *)				
Bicarbonatos (HCO ₃)				
Nitratos (NO ₃ ')				
Nitritos (NO ₂ ')				
RELACIONES IONICAS				
CVNa				
CV(Na+k)				
CVSO ₄				
(CO ₃ +HCO ₃)/Ca		·		
(CO ₃ +HCO ₃)/(Ca+Mg)				
(003				
FECHA				
LABORATORIO .				
	s son provisionales ya que to	· · · · · · · · · · · · · · · · · · ·		
Para mayor información: Frar	ncisco González Jaraba (Técnio	co responsable)		
Cf Doctor Vermeo, 7. Bajo. Las Palmas. Tfno. 316921				

INVENTARIO DE SISTEMAS NO CONVENCIONALES

DE PROD	UCCION DE AGUA	

OCOVANI ETO DE CAPATRA	Nº DE ORDEN				
SITUACION: ISLA: GRAN CANARIA	ZONIFICACION: S-6				
DEPURADORA.	TERMINO MUNICIPAL : MOGAN HOJA TOPOGRAFICA : (1:25.000)				
RESIDENCIAL AND MOSALL SERVICIOS PORTUARIOS OCEANO ATLANTICO.	ARGUINEGUIN (82-86) COORDENADAS X Y Z 424.650 3.077.800 1 PARAJE: PUERTO DE MOGAN ARRANQUE DEL DIQUE DE ABRIGO (Avda. Castilla)				
ORIGEN DEL AGUA:AGUAS RESIDUALI	ES				
DAT	TOS TECNICOS				
PLANTA TIPO: DEPURADORA SISTEMA AIREACION CON SOPLANTES EN FONDO CONSUMO ENERGETICO / m ³	CAPACIDAD DE PRODUCCION 300 m³/día PRODUCCION REAL 150 m³/día GRADO DE UTILIZACION 50%				
UTILIZACION DEL AGUA					
ABASTECIMIENTO : POBLACION	ABASTECIMIENTO: POBLACION				
	DOTACION				
VOLUMEN SUMINISTRADO REGADIO: SUPERFICIE					
INDUSTRIA: TIPO	VOLUMEN				
	RESIDUOS				
TIPO FANGOS VOLUMEN LUGAR DE VERTIDO VACIADO DE TANQUES AL MAR					

PARAMETROS	AGUA A DEPURAR	AGUA DEPURADA
FISICOS		<u> </u>
Conductividad (µs/cm)		
Dureza (ppm CaCO ₃)		
pH		
Residuo seco (ppm)		
	······································	
CATIONES		
Litio (Li*)		
Sodio (Na*)		
Potasio (K*)		
Calcio (Ca**)		
Magnesio (Mg**)		
Amonio (NH ₄ +)		
ANIONES		
ANIONES		
Sulfatos (SO4")		
Cloruros (Ct)		
Carbonatos (CO ₃ *)		
Bicarbonatos (HCO ₃ *)		
Nitratos (NO ₃ ')		
Nitritos (NO ₂ ')		
RELACIONES IONICAS		
CVNa		
CV(Na+k)		
CVSO4		
(CO ₃ +HCO ₃)/Ca		
(CO ₃ +HCO ₃)/(Ca+Mg)		
FECHA		
LABORATORIO		
OBSERVACIONES _Actualmente	el vertido se realiza integ	ramente al mar. Está

OBSERVACIONES <u>Actualmente el vertido se realiza integramente al mar. Está previsto en un futuro utilizarla para el riego de los jardines de la urbanización.</u>

Depura los vertidos procedentes de la urbanización del puerto y los del casco antiguo de Mogán.

GEOMECANICA Y AGUAS, S.A.

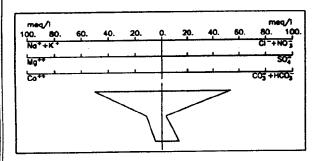
ANALISIS Nº

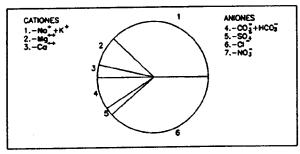
FECHA DE MUESTREO :

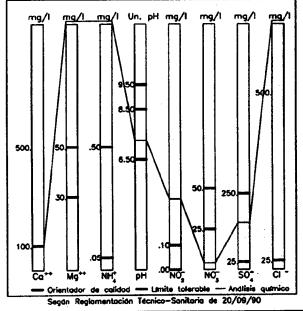
PETICIONARIO : GEO-AGUA, S.A.

FECHA DE ANALISIS : 12-08-91

DENOMINACION : PUERTO MOGAN


HOJA DE ANALISIS


RESULTADOS	ANALI	TICOS :					
CATIONES		mg/l	meq/l	ANIONES		mg/l	meq/l
Litio	Li+	.00	.00	Sulfatos	SO ₇	154.00	3.20
Sodio	Na +	1120.00	48.72	Cloruros	CI [±]	1883.00	53.10
Potasio	K+	59.00	1.51	Carbonatos	co 🗧	.00	.00
Calcio	Ca ++	100.00	5.00	Bicarbonatos	HCO3	797.00	13.07
Magnesio	Ma ⁺⁺	140.00	11.56	Nitratos	NO-	4.00	.06
Amonio	NH‡	32.00	1.78	Nitritos	NO ;	.29	.01


ANALICIC EIGICOS .

RELACIONES IONICAS

ANALISIS FISICUS :		MELACIONES ION			
Conductividad a 25 °C (µS/cm)	6800.	CI/Na	1.09	Mg/Ca	2.31
Dureza calculada (ppm CaCO,)	828.20	CI/(Na+K)	1.06	Na/Ca	9.74
рН	7.26	CI/SO.	16.58	Na/K	32.26
Residuo seco calc. (ppm)	4857.14	(CO,+HCO,)/Ca	2.61	SO, /Ca	.64
Error analitico (%)	1.26	(CO ₃ +HCO ₃)/(Ca+Mg)	.79	SO ₄ /(Ca+Mg)	.19

OTRAS DETERMINACIONES:

INVENTARIO DE SISTEMAS NO CONVENCIONALES

DE PRODUCCION DE AGUA

GeoMinero de España		Nº DE ORDEN3		
SITUACION: ISLA:	GRAN CANARIA	ZONIFICACION: S-5		
DEPVRADORA DE LA SELECTION DE	K & Laurito	TERMINO MUNICIPAL: MOGAN HOJA TOPOGRAFICA: (1:25.000) ARGUINEGUIN (82-86) COORDENADAS X Y Z 425.990 3.076.900 5 PARAJE: HOTEL TAURITO		
ORIGEN DEL AGUA:	GUAS RESIDUALES			
	DATOS	TECNICOS		
PLANTA TIPO : DEPURAD SISTEMA AIREACION DIFU EN FON CONSUMO ENERGETICO / m ³	SORES SOPLANTES	CAPACIDAD DE PRODUCCION 1200 m ³ /dfa		
UTILIZACION DEL AGUA				
ABASTECIMIENTO: POBLACION Nº HABITANTES DOTACION VOLUMEN SUMINISTRADO REGADIO: SUPERFICIE CULTIVO VOLUMEN INDUSTRIA: TIPO VOLUMEN				
	RES	BIDUOS		
	TIPO FANGOS VOLUMEN			

PARAMETROS	AGUA A DEPURAR	AGUA DEPURADA
FISICOS		
Conductividad (µs/cm)		
Dureza (ppm CaCO ₃)		
pH		
Residuo seco (ppm)		
CATIONES		
Litio (Li*)		
Sodio (Na*)		
Potasio (K*)		
Calcio (Ca ⁺⁺)	•	
Magnesio (Mg**)		
Amonio (NH ₄ *)		
ANIONES		
Sulfatos (SO ₄ ")		
Cloruros (Cl)		
Carbonatos (CO ₃ ")		
Bicarbonatos (HCO ₃ ')		
Nitratos (NO ₃)		
Nitritos (NO ₂ ')		
RELACIONES IONICAS		
CVNa		
CV(Na+k)		
CVSO ₄		
(CO ₃ +HCO ₃)/Ca		
(CO₃+HCO₃)/(Ca+Mg)		
FECHA		
LABORATORIO		
OBSERVACIONES		
		1
<u> </u>		

GeoMinero de España	Nº DE ORDEN 4	
SITUACION: ISLA: GRAN CANARIA	ZONIFICACION: S-5	
A MOGAN	TERMINO MUNICIPAL : MOGAN HOJA TOPOGRAFICA : (1:25.000) ARGUINEGUIN (82-86) COORDENADAS X Y Z	
DEPURADORA PLAYA BE TAURO OCGÁNO ATLANTICO PUNTA DEL	427.950 3.075.000 5 PARAJE : PLAYA DEL CURA	
TABLERO		
ORIGEN DEL AGUA: AGUAS RESIDUALES		
	TECNICOS	
PLANTA TIPO: DEPURADORA SISTEMA AIREACION DIFUSORES SOPLANTES EN FONDO CONSUMO ENERGETICO / m ³	CAPACIDAD DE PRODUCCION 1600 m ³ /dfa PRODUCCION REAL GRADO DE UTILIZACION	
UTILIZACI	ON DEL AGUA	
ABASTECIMIENTO : POBLACION Nº HABITANTES DOTACION VOLUMEN SUMINISTRADO REGADIO : SUPERFICIE CULTIVO		
INDUSTRIA: TIPO VOLUMEN		
RE	SIDUOS	
TIPO FANGOS VOLUMEN		

PARAMETROS	AGUA A DEPURAR	AGUA DEPURADA
FISICOS		
Conductividad (µs/cm)		
Dureza (ppm CaCO ₃)		
pH		
Residuo seco (ppm)		
CATIONES		
Litio (Li*)		
Sodio (Na*)		
Potasio (K*)		
Calcio (Ca ⁺⁺)		
Magnesio (Mg**)		
Amonio (NH ₄ *)		
4440450		
ANIONES		
Sulfatos (SO ₄ °)		
Cloruros (Cf)		
Carbonatos (CO ₃ ")		
Bicarbonatos (HCO ₃ ')	***************************************	
Nitratos (NO ₃)		The state of the s
Nitritos (NO ₂ ')		
RELACIONES IONICAS		
CVNa		
CV(Na+k)		
cvso.		
(CO ₃ +HCO ₃)/Ca		
(CO ₃ +HCO ₃)/(Ca+Mg)		
FECHA		
LABORATORIO		
OBSERVACIONES		
	TT-5-	

GeoMinero de España	Nº DE ORDEN5
SITUACION: ISLA: GRAN CANARIA	ZONIFICACION: S-5
CROQUIS URBANIZ. HALSODALEM DEPURADORA RECONSTRUCT PLAYA DE TAURO PUNTA DEL TABLERO	TERMINO MUNICIPAL: MOGAN ARGUINEGUIN.(82-86) HOJA TOPOGRAFICA: (1:25.000) COORDENADAS X Y Z 428.800 3.075.400 20 PARAJE: URBANIZACION HALSODALEM
ORIGEN DEL AGUA: AGUAS RESIDUALE	S
DATO	S TECNICOS
PLANTA TIPO: DEPURADORA SISTEMA AIREACION DIFUSORES SOPLANTES EN FONDO CONSUMO ENERGETICO / m ³	
UTILIZAC	CION DEL AGUA
ABASTECIMIENTO : POBLACION Nº HABITANTES DOTACION VOLUMEN SUMINISTRADO REGADIO : SUPERFICIE CULTIVO VOLUMEN INDUSTRIA : TIPO VOLUMEN	
	RESIDUOS
RESIDUOS	
TIPO FANGOS	VOLUMEN
LUGAR DE VERTIDO	

PARAMETROS	AGUA A DEPURAR	AGUA DEPURADA
FISICOS		
Conductividad (µs/cm)		
Dureza (ppm CaCO ₃)		
pH		
Residuo seco (ppm)		
CATIONES		
Litio (Li*)		
Sodio (Na ⁺)		
Potasio (K*)		
Calcio (Ca**)	· · · · · · · · · · · · · · · · · · ·	
Magnesio (Mg**)		
Amonio (NH ₄ +)		
ANIONES		
Sulfatos (SO ₄ *)		
Cloruros (Cl')		
Carbonatos (CO ₃ *) Bicarbonatos (HCO ₃ *)		
Nitratos (NO ₃ ·)		
Nitritos (NO ₂ ')		
111111111111111111111111111111111111111		
RELACIONES IONICAS		
CVNa		
CV(Na+k)		
CVSO ₄		
(CO ₃ +HCO ₃)/Ca		
(CO ₃ +HCO ₃)/(Ca+Mg)		
	1	
55014		**************************************
FECHA LABORATORIO		
OBSERVACIONESSe_utiliza	a para el riego de los jardin	es de la urbanización
	,	

INVENTARIO DE SISTEMAS NO CONVENCIONALES

DE PRODUCCION DE AGUA

GeoMinero de España	Nº DE ORDEN 6	
SITUACION: ISLA: GRAN CANARIA	ZONIFICACION: S-5	
CROQUIS K.H. POVERODORA I DEPURADORA I	TERMINO MUNICIPAL : MOGAN HOJA TOPOGRAFICA : (1:25.000) ARQUINEGUIN (82-86) COORDENADAS X Y Z 429.700 3.073.300 5	
OCEDNO ATLANTICO	PARAJE : URBANIZACION PUERTO RICO (PUERTO, DEPURADORA Nº 1)	
ORIGEN DEL AGUA: AGUAS RESIDUALES		
DATOS	TECNICOS	
PLANTA TIPO: DEPURADORA SISTEMA OXIDACION TOTAL CONSUMO ENERGETICO / m³ 117 Kw (potencia instalada) CAPACIDAD DE PRODUCCION 1750 m³/día PRODUCCION REAL 1750 m³/día GRADO DE UTILIZACION 100%		
UTILIZACION DEL AGUA		
ABASTECIMIENTO : POBLACION Nº HABITANTES DOTACION VOLUMEN SUMINISTRADO REGADIO : SUPERFICIE 16.000 m² CULTIVO JARDINES VOLUMEN INDUSTRIA : TIPO VOLUMEN		
RES	SIDUOS	
TIPO FANGOS VOLUMEN LUGAR DE VERTIDO SE RECOGE Y DESPUES DEL CENTRIFUGADO SE LLEVA AL VERTEDERO DE LA URBANIZACION		
DE LA URBANIZACION	• • • • • • • • • • • • • • • • • • • •	

PARAMETROS	AGUA A DEPURAR	AGUA DEPURADA
FISICOS		
Conductividad (µs/cm)		
Dureza (ppm CaCO₃)		
pH		
Residuo seco (ppm)		
CATIONES		
Litío (Li*)	_	
Sodio (Na ⁺)		
Potasio (K*)		
Calcio (Ca**)		
Magnesio (Mg ⁺⁺)		
Amonio (NH ₄ *)		
ANIONES		
Sulfatos (SO ₄ ")		
Cloruros (Cf)		
Carbonatos (CO ₃ *)		
Bicarbonatos (HCO ₃ ')		
Nitratos (NO ₃ -)		
Nitritos (NO ₂)		
RELACIONES IONICAS		
CVNa		
CV(Na+k)		
CVSO4		
(CO ₃ +HCO ₃)/Ca		
(CO ₃ +HCO ₃)/(Ca+Mg)		
FECHA		
LABORATORIO		
OBSERVACIONES Recoge los	vertidos de aproximadamente	7000 habitantes.
	ez Muños (Avda. de Escalerita	

GeoMinero de España	Nº DE ORDEN 7
SITUACION: ISLA: GRAN CANARIA	ZONIFICACION : S-5
CROQUIS	TERMINO MUNICIPAL : MOGAN
K.71 RICO	HOJA TOPOGRAFICA: (1:25.000) ARGUINEGUIN (82-86) COORDENADAS X Y Z
DEPURATORA II DEPURADORA I	429.200 3.073.700 15
OCEDNIO.	PARAJE: URBANIZACION PUERTO RICO (DEPURADORA, Nº 2)
ORIGEN DEL AGUA: AGUAS RESIDUALES	
DATOS	TECNICOS
PLANTA TIPO : DEPURADORA	CAPACIDAD DE PRODUCCION 2500 m ³ /día
SISTEMA OXIDACION TOTAL	PRODUCCION REAL 1250 m ³ /día
CONSUMO ENERGETICO / m³ 123 Kw (potencia instalada)	GRADO DE UTILIZACION. 50%
UTILIZACIO	ON DEL AGUA
ABASTECIMIENTO : POBLACION	
Nº HABITANTES	DOTACION
VOLUMEN SUMINISTRADO	
REGADIO: SUPERFICIE 31250 m ² CULTIVO	O JARDINES
VOLUMEN300.m3/dfa(1.o.s950	0.m ³ /día.se.cloran.y.se.vierten.al.mar)
INDUSTRIA: TIPO	VOLUMEN
RE:	SIDUOS
TIPO FANGOS	VOLUMEN
LUGAR DE VERTIDO SE RECOGEN Y DESPUES DE LA URBANIZACION	DEL CENTRIFUGADO SE LLEVAN AL VERTEDERO

PARAMETROS	AGUA A DEPURAR	AGUA DEPURADA
FISICOS		
Conductividad (µs/cm)		
Dureza (ppm CaCO ₃)		
pH		
Residuo seco (ppm)		
	` .	
CATIONES		•
Litio (Li*)	. S . V . S	
Sodio (Na*)		
Potasio (K*)		
Calcio (Ca**)		
Magnesio (Mg ⁺⁺)		
Amonio (NH ₄ *)		
ANIONES		
Sulfatos (SO ₄ ")		
Cloruros (Cl)		
Carbonatos (CO ₃ ⁻)		
Bicarbonatos (HCO ₃ ')		
Nitratos (NO ₃ -)		
Nitritos (NO ₂ -)		
RELACIONES IONICAS		
CVNa		
Cl/(Na+k)		
CVSO4		
(CO ₃ +HCO ₃)/Ca		
(CO ₃ +HCO ₃)/(Ca+Mg)		
FECHA		
LABORATORIO		
OBSERVACIONES <u>Recoge los v</u> Información% José Fernández	vertidos de aproximadamente 5 Muñoz (Avda. de Escaleritas,	33, 7º) Tfn. 253961

GeoMinero de España		Nº DE ORDEN 8	
SITUACION: ISLA	GRAN CANARIA	ZONIFICACION: S-5.	
CROQUIS DEPURADOR	ESCALA 1:10.000	TERMINO MUNICIPAL: MOGAN HOJA TOPOGRAFICA: (1:25.000) ARGUINEGUIN (82-86) COORDENADAS X Y Z 431.600 3.075.050 60 PARAJE: URBANIZACION PUERTO RICO (DEPURADORAS 3 y 4)	_
ORIGEN DEL AGUA :A	GUAS RESIDUALES		
	DATOS	TECNICOS	
PLANTA TIPO : DEPURA SISTEMA OXIDACION TO CONSUMO ENERGETICO / m ³ (potenci	TAL	CAPACIDAD DE PRODUCCION 5000 m ³ /día PRODUCCION REAL 2500 m ³ /día GRADO DE UTILIZACION 50%	
UTILIZACION DEL AGUA			
ABASTECIMIENTO: POBLACION Nº HABITANTES DOTACION VOLUMEN SUMINISTRADO REGADIO: SUPERFICIE 16.900 m² CULTIVO JARDINES VOLUMEN 600 m³/día (los 1900 m³/día restantes se vierten al mar) INDUSTRIA: TIPO VOLUMEN			
RESIDUOS			
TIPO FANGOS VOLUMEN LUGAR DE VERTIDO SE RECOGEN Y DESPUES DEL CENTRIFUGADO SE LLEVAN AL VERTEDERO DE LA URBANIZACION			

PARAMETROS	AGUA A DEPURAR	AGUA DEPURADA
FISICOS		
Conductividad (µs/cm)		
Dureza (ppm CaCO ₃)	· · · · · · · · · · · · · · · · · · ·	
pH		i i
Residuo seco (ppm)		
CATIONES		
Litio (Li*)		
Sodio (Na ⁺)		
Potasio (K ⁺)		
Calcio (Ca ⁺⁺)		
Magnesio (Mg ⁺⁺)		
Amonio (NH ₄ *)		
ANIONES		
Sulfatos (SO ₄ *)		
Cloruros (Cl)		
Carbonatos (CO ₃ *)		
Bicarbonatos (HCO ₃ ')		
Nitratos (NO ₃ ')		
Nitritos (NO ₂)		
111100 (1.102)		
RELACIONES IONICAS		
CVNa		
CV(Na+k)		
CVSO4		
(CO ₃ +HCO ₃)/Ca		
(CO ₃ +HCO ₃)/(Ca+Mg)		
		· · · · · · · · · · · · · · · · · · ·
FECHA		
LABORATORIO .		
OBSERVACIONES Son dos plantas depuradoras muy próximas (conjuntamente tratan		
los vertidos de aproximadamente 20.000 habitantes).		
Información: José Fernández Muñoz (Avda. de Escalerita,,33, 7º) Tfn. 253961		

GeolVlinero de España	Nº DE ORDEN9	
SITUACION: ISLA: GRAN CANARIA	ZONIFICACION : S.4.B	
CROQUIS REPURS ACCEPANO ATLANTICO DEPURS PUNTA DEL PARCHIEL	TERMINO MUNICIPAL: MOGAN HOJA TOPOGRAFICA: (1:25.000) ARGUINEGUIN (82-86) COORDENADAS X Y Z 433.850 3.069.600 5 PARAJE: PUNTA DEL PARCHEL (SANTA AGUEDA)	
ORIGEN DEL AGUA: AGUAS RESIDUALES	S	
DATO	OS TECNICOS	
PLANTA TIPO : DEPURADORAS CAPACIDAD DE PRODUCCION SISTEMA AIREACION DIFUSORES SOPLANTES PRODUCCION REAL 650 m ³ /día EN FONDOS CONSUMO ENERGETICO / m ³ GRADO DE UTILIZACION		
UTILIZACION DEL AGUA		
ABASTECIMIENTO : POBLACION		
INDUSTRIA: TIPO	YOLUMEN	
F	RESIDUOS	
	VOLUMEN	
	EDORES Y POSTERIOR TRASLADO AL VERTEDERO	

PARAMETROS	AGUA A DEPURAR	AGUA DEPURADA
FISICOS		
Conductividad (µs/cm)		
Dureza (ppm CaCO ₃)		
pH		
Residuo seco (ppm)		
CATIONES		
Litio (Li*)		
Sodio (Na*)		
Potasio (K*)		
Calcio (Ca ⁺⁺)		
Magnesio (Mg ⁺⁺)		
Amonio (NH ₄ *)		
ANIONES		
Sulfatos (SO ₄ 7)		
Cloruros (Cf)		
Carbonatos (CO ₃ *)		
Bicarbonatos (HCO ₃ ')		
Nitratos (NO ₃)		
Nitritos (NO ₂ ")		
RELACIONES IONICAS		
CVNa		
CV(Na+k)		
CVSO4		
(CO ₃ +HCO ₃)/Ca		
(CO ₃ +HCO ₃)/(Ca+Mg)		-
		=
FECHA		
LABORATORIO		
OBSERVACIONES Recoge los	vertidos de aproximadamente	6000 habitantes.
Vierte la totalidad del agu		

Nº DE ORDEN 10

SITUACION:	ISLA	GRAN CANARIA	ZONIFICACION: S-5	
CROQUIS POTABILIZADORA		POTABILI ZADORA	TERMINO MUNICIPAL : MOGAN	
PUERTO RICO	33	HOJA TOPOGRAFICA: (1:25.000) ARGUINEGUIN (82-86)		
	13 3 3 S	COORDENADAS		
	k.72			
		430.500		
	PUNTA DE LA PEREL	PARAJE : PUERTO RICO		
OCEA	NO ATU	WTico		
ORIGEN DEL AGUA : AGUA DEL MAR				
DATOS TECNICOS				
PLANTA TIPO :	POTABIL	JIZADORA	CAPACIDAD DE PRODUCCION 3400 m ³ /día	
SISTEMA COMPRESION VAPOR PRODUCCION REAL 1100 m ³ /día				
CONSUMO ENERGETICO / m ³ 11,5 Kw GRADO DE UTILIZACION				
UTILIZACION DEL AGUA				
ABASTECIMIENTO: POBLACION URBANIZACION PUERTO RICO				
Nº HABITANTES DOTACION 250 1/hab./día				
VOLUMEN SUMINISTRADO 400000 m3/año				
REGADIO : SUPERFICIE CULTIVO				
VOLUMEN				
INDUSTRIA: TIP	INDUSTRIA: TIPO VOLUMEN			
RESIDUOS				
TIPO SALMUER			VOLUMEN 130.000 m ³ /año	
LUGAR DE VERTIDO MAR				

ANALISIS QUIMICO (EN POTABILIZADORA)

PARAMETROS	AGUA A DEPURAR	AGUA DEPURADA
FISICOS		1
Conductividad (µs/cm)		
Dureza (ppm CaCO ₃)		
pH		
Residuo seco (ppm)		
CATIONES		
Litio (Li*)		
Sodio (Na*)		
Potasio (K*)	ļ	
Calcio (Ca ⁺⁺)		
Magnesio (Mg ⁺⁺)		
Amonio (NH ₄ *)		
ANIONES		
Sulfatos (SO ₄ -)		
Cloruros (Cr)		
Carbonatos (CO ₃ ")		
Bicarbonatos (HCO ₃ ')		
Nitratos (NO ₃)		
Nitritos (NO ₂)		
RELACIONES IONICAS		
CVNa		
CV(Na+k)		
CVSO4		
(CO ₃ +HCO ₃)/Ca		
(CO ₃ +HCO ₃)/(Ca+Mg)		
	İ	
ECHA		
ABORATORIO		
DBSERVACIONESEs propier	dad de la empresa TOECANARIAS	S. Empezó a funcionar
en 1988.		
Información: José Fernández	Muñoz (Avd. Escaleritas, 33	7º) Tfn. 253961

INVENTARIO DE SISTEMAS NO CONVENCIONALES DE PRODUCCION DE AGUA

Nº DE ORDEN...11

SITUACION: ISLA; GRAN CANARIA	ZONIFICACION : S-5
CROQUES DE SELITO DE SELIT	TERMINO MUNICIPAL: MOGAN HOJA TOPOGRAFICA: (1:25.000) ARGUINEGUIN (82-86)
POTABILIE. K.70	COORDENADAS
PLAYA BALITO PROMIZ. VORGA	x y z 430.750 3.072.600 25
PUNTA DE LOS L'INCIENSOS	
OCESNO	PARAJE : BARRANCO BALITO
ATLANTICO	
ORIGEN DEL AGUA : AGUA DE MAR	
DATOS	TECNICOS
PLANTA TIPO: POTABILIZADORA SISTEMA OSMOSIS INVERSA CONSUMO ENERGETICO / m ³ 8 Kw	CAPACIDAD DE PRODUCCION 200 m ³ /día PRODUCCION REAL 180 m ³ /día GRADO DE UTILIZACION
UTILIZACIO	N DEL AGUA
ABASTECIMIENTO: POBLACIONNUEVAURBANIZ	
Nº HABITANTES	DOTACION 400 l/hab./día
VOLUMEN SUMINISTRADO	
REGADIO : SUPERFICIE CULTIVO)
VOLUMEN	
INDUSTRIA: TIPO	VOLUMEN
RES	SIDUOS
TIPO SALMUERA	VOLUMEN
LUGAR DE VERTIDO MAR	

ANALISIS QUIMICO (EN POTABILIZADORA)

PARAMETROS	AGUA A DEPURAR	AGUA DEPURADA
FISICOS		
Conductividad (µs/cm)		
Dureza (ppm CaCO ₃)		
pH		
Residuo seco (ppm)		
CATIONES	:	
Litio (Li*)		
Sodio (Na*)		
Potasio (K*)		
Calcio (Ca ⁺⁺)		
Magnesio (Mg [↔])		
Amonio (NH ₄ *)		
ANIONES		
Sulfatos (SO ₄ *)		
Cloruros (Cl)		
Carbonatos (CO ₃ ")		
Bicarbonatos (HCO ₃)		
Nitratos (NO ₃ ')		
Nitritos (NO ₂ -)		
RELACIONES IONICAS		
CVNa		
CV(Na+k)		
CVSO4		
(CO ₃ +HCO ₃)/Ca		
(CO ₃ +HCO ₃)/(Ca+Mg)		
FECHA		
LABORATORIO		
OBSERVACIONES <u>Fl titular</u>	CADTEMAR	
	el abastecimiento de hasta :	2000 personas. Está en
funcionamiento desde 1989.		

INVENTARIO DE SISTEMAS NO CONVENCIONALES

DE PRODUCCION DE AGUA

Nº DE ORDEN 12

Georgii ie o de Espai a			Nº DE ORDEN 14
SITUACION: ISLA:	GRAN CANARIA	ZONIFICACION :	S-5
CROQUIS .	<i>!</i>	TERMINO MUNICIPAL :	MOGAN
PONTA DE LOS JNCIENSOS POTABILI	/K-69	HOJA TOPOGRAFICA: (1 ARGUINEGUIN (82-86) COORDEN X 432.400 3.07	25.000) ADAS Y Z 1.600 40
OCEDNO ATLANTICO		PARAJE : PATALAVACA (HOTEL LA CANA	
ORIGEN DEL AGUA : PO	ZO PROXIMO A LA LIN	EA DE COSTA	
	DATOS	TECNICOS	
PLANTA TIPO : POTABIL SISTEMA OSMOSIS INVE CONSUMO ENERGETICO / m ³	RSA	CAPACIDAD DE PRODUCC PRODUCCION REAL	
	UTILIZACIO	N DEL AGUA	
Nº HAI	BITANTES 4.80	DOTACION60	00 1/hab./día
REGADIO : SUPERFICIE	CULTIVO		
INDUSTRIA : TIPO HO	STELERIA	VOLUMEN	
	RES	IDUOS	
		VOLUMEN	.24.m ³ /día
LUGAR DE VERTIDO	POZO PROXIMO AL MAR		

ANALISIS QUIMICO (EN POTABILIZADORA)

PARAMETROS	AGUA A DEPURAR	AGUA DEPURADA
FISICOS		
Conductividad (µs/cm)		
Dureza (ppm CaCO ₃)		
pH		
Residuo seco (ppm)		
Hesious seco (ppili)		
CATIONES		
Litio (Li*)		
Sodio (Na ⁺)		
Potasio (K*)		
Calcio (Ca ⁺⁺)		
Magnesio (Mg**)		
Amonio (NH ₄ *)		
ANIONES		
Sulfatos (SO,")		
Cloruros (Cf)		
Carbonatos (CO ₃ *)		
Bicarbonatos (HCO ₃)		
Nitratos (NO ₃)		
Nitritos (NO ₂)		
RELACIONES IONICAS		
CVNa		
CV(Na+k)		
CVSO4		
CO ₃ +HCO ₃)/Ca		
CO ₃ +HCO ₃)/(Ca+Mg)		
	• .	
ECHA		

OBSERVACIONES Se abastecen en un 15% de la potabilizadora èl resto del agua de abastecimiento lo suministra Aguas de Arguineguín S.A. También se utiliza el agua para riego y piscina. Información: ERHARD WEISHAUPL (Servicio Técnico hotel la Canaria. Tfn. 150400)

ANEJO II Estudios de avenidas

ESTUDIO DE AVENIDAS EN BARRANCOS DE GRAN CANARIA. ZONA SUR TOMO II

PREAMBULO.-

El Estudio de Máximas Avenidas en Barrancos de Gran Canaria es la continuación lógica del Estudio de Pluviometría ya publicado. Ha sido una actualización del estudio del mismo título publicado por el Centro de Estudios y Experimentación del Ministerio de Obras Públicas y Urbanismo en Febrero de 1.975 y presenta como originalidad el estudio de la capacidad de arrastre que, si se dan las condiciones previstas, puede ser capaz de producir un caudal determinado en la desembocadura de cada barranco estudiado. Es de esperar que en un plazo prudente de tiempo seamos capaces de abordar los estudios de la intensidad de la precipitación y de los coeficientes de escorrentía que se indican en las Conclusiones.

La realización del estudio ha estado a cargo de José Luis Lorenzo Riera con la gran colaboración de Federico Suárez Quevedo, sin por ello dejar de resaltar la parte alícuota del trabajo que corresponde al Equipo de Planificación que figura en la página siguiente.

EL DIRECTOR DEL PLAN HIDROLOGICO
DE GRAN CANARIA

José Luis Guerra Marrero.

EQUIPO DE PLANIFICACION

José Luis Guerra Marrero. Ingeniero de Caminos, Canales y Pucrtos.

Diana Rodríguez Suárez. Geológa.

Federico Suárez Quevedo. Ingeniero Técnico de Obras Públicas.

Mariano Lescún Vallina. Ingeniero Técnico de Obras Públicas.

Rosa Delia Suárez Batista. Auxiliar Técnico.

Juan Luis López Artiles. Auxiliar Técnico.

Sylvia Pérez Santana. Auxiliar Administrativo.

Fernando Suárez Marrero. Delineante.

Las Palmas de Gran Canaria, Febrero de 1.991.

INDICE DEL TOMO II

- MEMORIA
- ANEJOS
 - ANEJO Nº 1 BCO. TIRAJANA
 - ANEJO Nº 2 BCO. MASPALOMAS
 - ANEJO Nº 3 BCO. ARGUINEGUIN
 - ANEJO № 4 BCO. MOGAN

MEMORIA

INDICE DE LA MEMORIA

- 1.- INTRODUCCION Y ANTECEDENTES
- 2.- OBJETIVOS DEL ESTUDIO
- 3.- METODOLOGIA
- 4.- RESUMEN DE RESULTADOS
- 5.- CONCLUSIONES

ESTUDIO DE AVENIDAS EN BARRANCOS DE GRAN CANARIA

1.- INTRODUCCION Y ANTECEDENTES.

Al acometer los trabajos de planificación hidrológica en la Isla de Gran Canaria y después de realizar el "Estudio de Pluviometría", se vió la necesidad de actualizar los estudios de avenidas en los diferentes barrancos de la Isla.

Las avenidas de barrancos en Gran Canaria fueron estudiadas por el Centro de Estudios Hidrográficos y publicadas en los "Estudios de Máximas Crecidas" en Febrero de 1.975 En estos trabajos se utilizaron datos pluviométricos que comprendían el período 1.949-50/1.969-70.

El "Estudio de Pluviometría" realizado para el Plan Hidrológico de Gran Canaria y publicado en Mayo de 1.989 comprendía los registros pluviométricos hasta el año 1.987-88, le que significa 18 años más de serie, justificándose así la necesidad de actualizar los estudios de avenidas.

Por otra parte, se ha pretendido complementar el estudio de avenidas con la determinación de la capacidad de arrastre de materiales sólidos en los cauces.

2.-OBJETIVOS DEL ESTUDIO.

El objetivo de este trabajo es determinar las avenidas de diferentes períodos de retorno que pueden producirse en los principales barrancos de la Isla de Gran Canaria, así como la capacidad de arrastre de materiales sólidos en los cauces. Tanto las avenidas como la capacidad de arrastre se obtendrán en las zonas de desembocadura de los barrancos.

Los períodos de retorno para los que se determinarán las avenidas serán de 5, 25, 50, 100 y 500 años.

Los barrancos a los que se extiende el estudio son los siguientes:

- Guiniguada
- Telde
- Guayadeque
- Tirajana
- Maspalomas
- X- Arguineguín
- ⊁- Mogán
 - La Aldea
 - Agacte
 - Moya
 - Azuajc
 - Tenoya

3.-METODOLOGIA.

La metodología utilizada en este trabajo para el estudio de las avenidas en barrancos es prácticamente idéntica, a excepción de pequeños detalles, a la seguida en los "Estudios de Máximas Crecidas", elaborados por el Centro de Estudios Hidrográficos, lo que facilitará la comparación de resultados.

Consiste ésta en la utilización del método de las curvas isocronas para la determinación del hidrograma en el punto deseado; en este caso, en la desembocadura de los barrancos estudiados.

Se han trazado, por lo tanto, las curvas isocronas de cada cuenca, en el plano topográfico de Gran Canaria a escala 1:50.000, con intervalos de tiempo de media hora. Para ello se han tenido en cuenta las velocidades medias estimadas del agua en los diferentes tramos de cada barranco, definidos éstos, por intervalos de cota. Para las velocidades se han utilizado los mismos valores adoptados en los "Estudios de Máximas Crecidas", comprobándose que las isocronas resultantes eran sensiblemente coincidentes con las definidas en dichas publicaciones. Posteriormente se procedió al planimetrado de las cuencas y de cada tramo comprendido entre dos isocronas.

En todas las cuencas el tiempo de concentración obtenido del trazado de las isocronas es superior al resultante de emplear algunas de las fórmulas empíricas convencionales, como la de Giandotti, justificándose esta diferencia en los "Estudios de Máximas Crecidas" por los arrastres sólidos que transporta la avenida, que disminuyen la velocidad media de propagación.

Una vez definidas las curvas isocronas, se situaron sobre el mismo plano las estaciones pluviométricas que afectan a cada cuenca teniendo en cuenta, que no presentaran errores en sus series de datos según el "Estudio de Pluviometría" y cuyos ajustes de los valores máximos en un día a la ley de distribución de Gumbel resultaran aceptables según el test de la Chi-cuadrado.

Situados los pluviómetros utilizables, se delimitaron sus correspondientes áreas de influencia sobre cada cuenca en estudio y sobre cada superficie entre isocronas por el procedimiento de los polígonos de Thiessen, procediéndose también al planimetrado de las mismas.

En este punto radica una de las pocas diferencias entre la metodología seguida en este trabajo para la determinación de avenidas y la adoptada en los "Estudios de Máximas Crecidas", ya que en éstos no se utilizó el procedimiento de los polígonos de Thiessen para el cálculo de los volúmenes de precipitación, sino que se optó por el trazado de líneas isomáximas de precipitación y la consideración posterior, en cada barranco, de tramos de intensidades medias diferentes, de forma análoga a lo que posteriormente se indicará para los coeficientes de escorrentía.

En cuanto a los coeficientes de escorrentía, se han utilizado también en este trabajo los mismos valores indicados en los "Estudios de Máximas Crecidas". En casi todas las cuencas se definen estos valores en diferentes tramos, diferenciándose en general tres zonas: alta, media y baja. No obstante, no se especifican los límites de estas zonas, salvo que coincidan con los intervalos de cota especificados para la adopción de velocidades medias del agua. Para este trabajo, y con el fin de simplificar el procedimiento de cálculo, se ha optado por hacer coincidir estos límites entre zonas altas, medias y bajas, con algunas líneas isocronas, comprobándose en todos los casos que el coeficiente de escorrentía medio resultante para toda la cuenca coincidía con el definido en los "Estudios de Máximas Crecidas".

Se ha utilizado la misma gama de duraciones del temporal que en los "Estudios de Máximas Crecidas", es decir, temporales de 1, 2, 3, 4, 5, 6 y 8 horas de duración. También es

idéntica la precipitación total del aguacero en función de la duración de éste, según las tablas que figuran en las citadas publicaciones.

De igual forma y de acuerdo con éstas, la distribución de intensidades a lo largo de cada hipótesis de duración del temporal es la siguiente: intensidad constante para los temporales de 1 y 2 horas de duración, mientras que para 3 ó más horas se supone intensidad uniforme durante las 2 primeras horas y decreciente en un 20% cada hora más de duración, hasta alcanzar un mínimo de un 20% en los temporales de 6 ó más horas.

Una vez definidas todas estas hipótesis, la aplicación del método es bien sencilla. Conocidos los valores de precipitación máxima en 24 horas en cada estación seleccionada y para los diferentes períodos de retorno, se obtiene la distribución horaria de precipitaciones, en función de la duración del temporal. Por el método de los polígonos de Thiessen se determina la lluvia caída en cada zona limitada por dos isocronas y en cada intervalo de tiempo, obteniéndose la aportación correspondiente una vez fijado el coeficiente de escorrentía de cada zona.

Por otra parte y a efectos comparativos, se han calculado los caudales máximos de avenida en cada cuenca y para cada período de retorno considerado siguiendo el método racional. Este método establece el caudal máximo según la siguiente expresión:

$$Q = \frac{C I_i A}{360}$$

en la que

Q= Caudal máximo, en m³/s.

C= Coeficiente de escorrentía.

I_t= Intensidad de precipitación para una duración del temporal igual al tiempo de concentración, en mm/h.

A= Superficie de la cuenca, en Ha.

El tiempo de concentración se ha obtenido por la fórmula de Giandotti:

$$t = \frac{4\sqrt{S} + 1.5 \text{ L}}{0.8\sqrt{H}} 60$$

siendo

t= Tiempo de concentración, en minutos.

S= Superficie de la cuenca, en Km².

L= Longitud del cauce principal, en Km.

H= Altura media dela cuenca, en m.

La intensidad de precipitación en función del tiempo de duración del aguacero, c ausencia de datos estadísticos, se determina por la siguiente expresión:

$$I = 9.25 \times I_b \times t^{-0.55}$$

en la que

I_t= Intensidad para una duración de t minutos, en mm/h.

I_h= Intensidad para 1 hora de duración, en mm/h.

t= Tiempo de duración del aguacero, en minutos.

Para I_h se adopta el 25% de la precipitación máxima en 24 horas para el períod de retorno considerado.

Por último, en lo referente a caudales máximos de avenidas, se han obtenido éste para un período de retorno de 500 años según diversas fórmulas empíricas, utilizadas también en le "Estudios de Máximas Crecidas". Las fórmulas utilizadas, cuyas expresiones se omiten pe encontrarse en dichas publicaciones, son las de Santi, Greager, Forti, G. Quijano, Zapata, Kuickling Turazza y Heras.

Para la otra fase del estudio, encaminada a determinar la capacidad de arrastre d sólidos en los cauces, se ha utilizado el método de Meyer-Peter, cuya formulación es la siguiente

$$q'_{\bullet} = \left(\frac{S_{\bullet} R_{\bullet} I_{\bullet} - 0.047 (S_{\bullet} - S_{\bullet}) dm}{0.25 (S_{\bullet} / g)^{1/3}}\right)^{3/2}$$

siendo:

q'= Caudal unitario de acarreos, en Kg/m s (peso sumergido).

S_a= Peso específico del líquido, en Kg/m³.

S_e= Peso específico del sólido, en Kg/m³.

R_h= Radio hidráulico, en m.

I_s= Pendiente hidráulica.

d_m= Diámetro determinante de las partículas (d₅₀), en m.

g= Aceleración de la gravedad = 9,8 m/s²

Por lo tanto, el caudal sólido se obtendrá mediante la siguiente expresión:

$$Q_{i} = q'_{i} = \frac{S_{i}}{S_{i} - S_{i}} b$$

En la que:

Q= Caudal sólido de acarreos, en Kg/s (peso seco).

b= Ancho medio del cauce, en m.

Es de destacar que la fórmula de Meyer-Peter obtiene la capacidad que posee un cierto caudal para transportar acarreos de una determinada característica granulométrica y en una determinada sección del cauce. Por lo tanto, sólo se llegará al valor proporcionado por esta fórmula si al curso de agua le es proporcionado todo el material que, de acuerdo con la energía disponible, esté en condiciones de transportar.

Para la aplicación del método de Meyer-Peter con las mayores garantías sería necesario disponer de aforos de distintos caudales en la sección del cauce a estudiar, con lo que se obtendrían el radio hidráulico y velocidad media de la corriente en condiciones reales, ya que, como es sabido, ambos son necesarios para la determinación de la pendiente hidráulica por cualquiera de las fórmulas habitualmente utilizadas. Por otra parte, es necesario también conocer el valor del diámetro determinante de las partículas arrastradas.

Si bien este último valor podría obtenerse analizando la granulometría de los acarreos en los cauces de los barrancos a estudiar, se ha optado por calcular la capacidad de arrastre para una gama de diámetros determinantes, que va desde 0,005 m. hasta 0,105 m., con intervalos de 0,020 m., lo que permitirá interpolar al valor deseado.

Para determinar las características hidráulicas de la corriente de agua en ausencia de aforos, se ha supuesto que los caudales son desaguados en régimen uniforme en la sección del cauce estudiada. Para ello se ha definido en cada barranco una sección tipo del cauce en la zona inmediata a la desembocadura, asimilándolas a una forma trapecial. Estas secciones tipo quedan, por lo tanto, definidas por el ancho en la base, ángulo que forma el talud con la horizontal y pendiente media del cauce.

Los calados se han déterminado por la fórmula de Manning, en la hipótesis de régimen uniforme, en la que la pendiente hidráulica se iguala a la pendiente del cauce.

$$I_h = \frac{n^2 V^2}{R_h^{4/3}}$$

Siendo:

I_s= Pendiente hidráulica.

n= Coeficiente de Manning.

V= Velocidad media del agua, en m/s.

R_s= Radio hidráulico, en m.

Esta hipótesis de régimen uniforme será tanto más aceptable en cuanto las características del cauce no ofrezean variaciones importantes, en lo referente a forma y dimensiones de la sección y a la pendiente, al menos en la zona próxima a la sección definida como sección tipo. También podrá admitirse como suficientemente aproximada en el supuesto de que el caudal considerado se mantiene durante el tiempo suficiente como para que se elimine el régimen transitorio en la corriente de agua.

Para el coeficiente de Manning se ha adoptado un valor de 0,030, igual en todos los cauces.

Por otra parte, se ha considerado que el agua lleva una carga de sólidos en suspensión del 20% en peso, por lo que en la aplicación de la fórmula de Meyer-Peter, se adopta el valor de 1.200 Kg./m³ como peso específico del líquido.

Para los sólidos arrastrados se ha considerado un peso específico de 2.650 Kg./m³.

4.-RESUMEN DE RESULTADOS.

Se incluye en este estudio un Anejo para cada cuenca estudiada, donde figuran datos físicos de la cuenca e hipótesis de partida para la determinación de los hidrogramas y capacidad de arrastre de sólidos, relación de estaciones pluviométricas utilizadas con sus ajustes a la ley de distribución de Gumbel, gráficos y cuadros de datos de los hidrogramas resultantes para cada período de retorno y duración del aguacero, cuadro comparativo de los caudales máximos de avenida para cada período de retorno y según diferentes métodos, gráficos y cuadros de datos de la capacidad de arrastre de sólidos y un plano de la cuenca con la situación de las estaciones pluviométricas utilizadas y el trazado de los polígonos de Thiessen y de las curvas isocronas.

Con el fin de disponer de una visión de conjunto, se presenta a continuación un resumen de los resultados obtenidos, según los distintos métodos utilizados.

En el cuadro I figuran los caudales máximos que han resultado en cada cuenca y para cada período de retorno. Se observa que, en general, el método de las isocronas, tal y como se ha utilizado en este trabajo, presenta los resultados más desfavorables.

Dejando aparte los resultados obtenidos por aplicación de fórmulas empíricas, de carácter únicamente estimativo, el método de las isocronas ha ofrecido, en todos los casos, valores del caudal máximo superiores, a veces muy considerablemente, a los aportados por el método racional. Es evidente que en esto influye de forma decisiva el tiempo de concentración que se considere en cada caso y sobre todo, la distribución de intensidades de precipitación a lo largo del temporal, temas que han sido tratados de forma diferente en uno y otro método.

		METO	DO RACIONA	VL		SANTI	GREAGER	FORTI	ONALIUD	ZAPATA	KUICKLING	TURAZZA	HERAS
CUENCA	Tr=5	Tr=25	Tr=50	Tr=100	Tr=500								
GUINIGUADA	152.86	240.11	276.53	311.85	394.42	407.70	495.68	441.23	279.00	260.54	238.70	554.08	332.45
TELDE	146.26	229.32	263.74	297.86	376.77	421.96	517.90	426.09	292.09	271.51	254.53	515.56	552.29
GUAYADEQUE	38.14	59.48	68.33	77.09	97.35	277.80	296.68	248.14	167.29	164.41	114.72	91.47	99.09
TIRAJANA	189.00	296.98	341.74	386.09	488.65	425.21	522.96	466.81	295.09	274.02	258.20	830.57	790.05
MASPALOMAS	200.11	311.14	357.11	402.70	508.10	581.25	766.89	677.97	447.68	398.74	455.37	877.72	832.24
ARGUINEGUIN	213.92	325.39	371.57	417.36	523.34	484.97	616.42	551.62	351.65	320.86	329.09	764.53	715.17
HOGAN	72.62	109.96	125.41	140.76	176.18	291.20	316.73	267.75	178.14	173.98	125.68	255.37	238.80
LA ALDEA	325.26	494.04	564.30	633.06	792.94	672.35	906.14	785.14	543.60	474.86	585.43	1223.13	1146.69
AGRETE	108.57 .	165.62	189.29	212.76	266.97	351.21	408.13	357.21	228.69	217.84	180.08	442.50	477.82
HOYA	75.20	118.19	135.97	153.64	194.46	263.63	275.64	227.68	156.01	154.40	103.63	252.29	271.34
AZUAJE	87.86	139.86	161.39	182.79	232.17	275.27	292.91	244.47	165.26	162.62	112.71	283.35	306.06
TENOYA	90.27	141.47	163.07	183.31	231.38	317.21	356.07	306.32	199.66	192.79	148.21	253.99	274.45
		METODO	DE LAS IS	OCRONAS									
CUENCA	Tr•5	Tr•25	Tr•50	Tr=100	Tr-500								
GUINIGUADA	202.00	316.40	364.20	410.40	518.70								
TELDE	211.60	331.40	381.10	430.30	544.10								
GUAYADEQUE	45.90	71.20	B1.70	92.10	116.10								
TIRRJANA	291.70	461.70	532.00	601.90	763.20								
MASPALOMAS	347.20	537.80	616.70	695.00	875.90		Tr-Tiempo	de retorno	(anos)				
ARGUINEGUIN	355.00	536.40	611.50	686.00	858.50								
MOGAN	109.70	165.80	189.00	212.10	265.30								
LA ALDEA	482.40	732.60	837.00	938.80	1175.80								
AGRETE	146.80	223.00	254.60	285.90	358.30								
HOYA	100.80	158.10	181.80	205.30	259.70								

AZUAJE

TENOYA

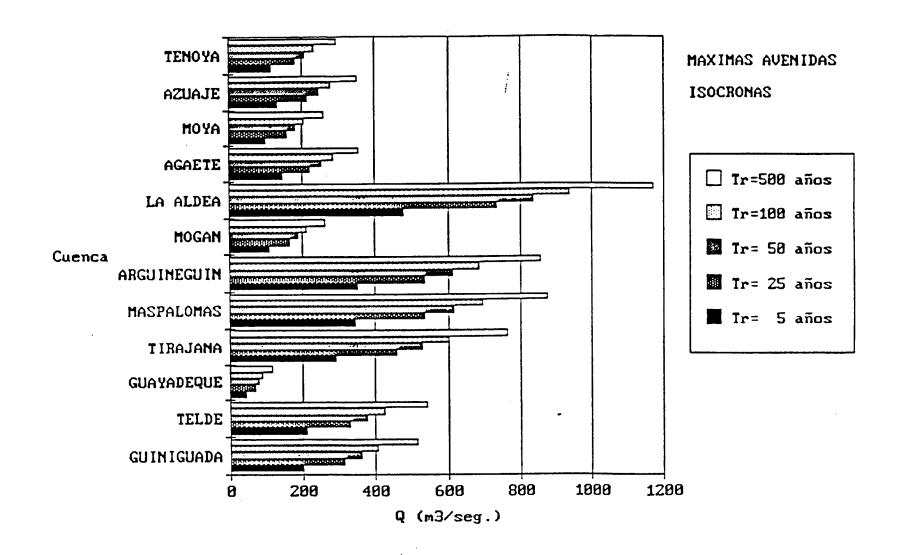
133.70

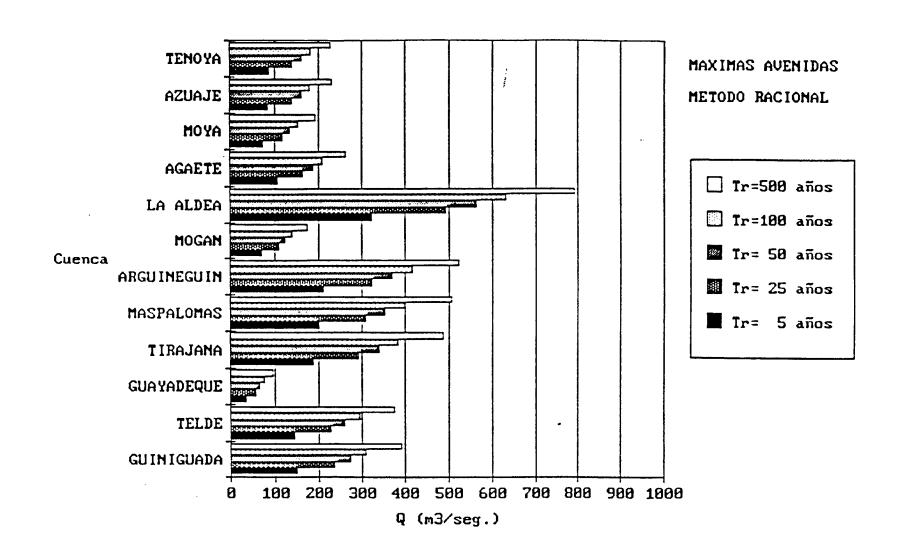
116.00

213.50

181.60

246.50


209.30


279.30

235.10

355.00

296.60

CAUDAL (m3/seg.)

CUENCA	100	200	300	400	500	600	700	800	900	1000	1100	1200
GUINIGUADA	3116	5804	8264	10529	12687							
TELDE	2601	4871	6921	8937	10933							
GUAYADEQUE	5202											
TIRAJANA	3119	5817	8265	10665	12773	15093	17115					
HASPALOHAS	1371	2544	3612	4622	5574	6508	7426	8294				
ARGUINEGUIN	996	1852	2648	3399	4157	4897	5621	6330				
HOGAN	1363	2434										
LA ALDEA	2135	4326	6251	8102	9878	11609	13336	15040	16649	18443	19984	21514
AGAETE	2495	4510	6312									
HOYA	3812	6867								'		
AZUAJE	4057	7209	10207									
TENOYA	4944	8766	12348									

CUADRO III CAPACIDAD DE ARRASTRE DE SOLIDOS (Kg/Beg.) PARA D-0.025 m.

CAUDAL (m3/meg.)

100	200	300	400	500	600	700	800	900	1000	1100	1200
2605	5382	7789	10013	12137							
2112	4252	6214	8156	10088							
4777											
2246	4697	6974	9231	11226	13435	15365					
1105	2208	3226	4197	5116	6020	6910	7754				
634	1346	2031	2689	3362	4025	4678	5321				
1167	2195										
994	2800	4487	6151	7780	9367	10970	12561	14070	15759	17215	18663
2190	4104	5830									
3555	6518										
3784	6857	9794									
4774	8538	12074									
	2805 2112 4777 2246 1105 634 1167 994 2190 3555 3784	2805 5382 2112 4252 4777 2246 4697 1105 2208 634 1346 1167 2195 994 2800 2190 4104 3555 6518 3784 6857	2805 5382 7789 2112 4252 6214 4777 2246 4697 6974 1105 2208 3226 634 1346 2031 1167 2195 994 2800 4487 2190 4104 5830 3555 6518 3784 6857 9794	2805 5382 7789 10013 2112 4252 6214 8156 4777 2246 4697 6974 9231 1105 2208 3226 4197 634 1346 2031 2689 1167 2195 994 2800 4487 6151 2190 4104 5830 3555 6518 3784 6857 9794	2805 5382 7789 10013 12137 2112 4252 6214 8156 10088 4777 2246 4697 6974 9231 11226 1105 2208 3226 4197 5116 634 1346 2031 2689 3362 1167 2195 994 2800 4487 6151 7780 2190 4104 5830 3555 6518 3784 6857 9794	2805 5382 7789 10013 12137 2112 4252 6214 8156 10088 4777 2246 4697 6974 9231 11226 13435 1105 2208 3226 4197 5116 6020 634 1346 2031 2689 3362 4025 1167 2195 994 2800 4487 6151 7780 9367 2190 4104 5830 3555 6518 3784 6857 9794	2805 5382 7789 10013 12137 2112 4252 6214 8156 10088 4777 2246 4697 6974 9231 11226 13435 15365 1105 2208 3226 4197 5116 6020 6910 634 1346 2031 2689 3362 4025 4678 1167 2195 994 2800 4487 6151 7780 9367 10970 2190 4104 5830 3555 6518 3784 6857 9794	2805 5382 7789 10013 12137 2112 4252 6214 8156 10088 4777 2246 4697 6974 9231 11226 13435 15365 1105 2208 3226 4197 5116 6020 6910 7754 634 1346 2031 2689 3362 4025 4678 5321 1167 2195 994 2800 4487 6151 7780 9367 10970 12561 2190 4104 5830 3555 6518 3784 6857 9794	2805 5382 7789 10013 12137 2112 4252 6214 8156 10088 4777 2246 4697 6974 9231 11226 13435 15365 1105 2208 3226 4197 5116 6020 6910 7754 634 1346 2031 2689 3362 4025 4678 5321 1167 2195 994 2800 4487 6151 7780 9367 10970 12561 14070 2190 4104 5830 3555 6518 3784 6857 9794	2805 5382 7789 10013 12137 2112 4252 6214 8156 10088 4777 2246 4697 6974 9231 11226 13435 15365 1105 2208 3226 4197 5116 6020 6910 7754 634 1346 2031 2689 3362 4025 4678 5321 1167 2195 994 2800 4487 6151 7780 9367 10970 12561 14070 15759 2190 4104 5830 3555 6518 3784 6857 9794	2805 5382 7789 10013 12137 2112 4252 6214 8156 10088 4777 2246 4697 6974 9231 11226 13435 15365 1105 2208 3226 4197 5116 6020 6910 7754 634 1346 2031 2689 3362 4025 4678 5321 1167 2195 994 2800 4487 6151 7780 9367 10970 12561 14070 15759 17215 2190 4104 5830 3555 6518 3784 6857 9794

CUADRO IV CAPACIDAD DE ARRASTRE DE SOLIDOS (Kg/seg.) PARA D=0.045 m.

CAUDAL (m3/meg.)

					• • • • • •			• • • • • •				
CUENCA	100	200	300	400	500	600	700	800	900	1000	1100	1200
GUINIGUADA	2476	4971	7322	9505	11595							
TELDE	1659	3662	5532	7399	9267							
GUAYADEQUE	4365											
TIRAJANA	1474	3660	5758	7869	9748	11842	13679					
HASPALOHA9	860	1885	. 2855	3786	4671	5545	6408					
ARGUINEGUIN	`331	896	1471	2036	2625	3212	3795					
HOGAN	981	1963										
LA ALDEA	192	1514	2930	4 3 8 8	5849	7291	8763	10236	11640	13220	14586	1595
AGRETE	1899	3711	5362									
HOYA	3305	6176										
AZUAJE	3517	6511	9388									
TENOYA	4606	8312	11803									

CAUDAL (#3/#eg.)

•	• • • • • •		• • • • • • •			• • • • • •	• • • • • • •		• • • • •				-
CUENCA	100	200	300	400	500	600	700	600	900	1000	1100	1200	
OUINIGUADA	2162	4571	6866	9006	11061								
TELDE	1243	3102	4877	6667	8469								
GUAYADEQUE	3965												
TIRAJANA	819	2713	4622	6581	8341	10318	12059						
HASPALOHAS	636	1585	2500	3389	4240	5083	5918	6712					
ARGUINEGUIN	103	512	975	1447	1952	2463	2976	3488					
HOGAN	607	1740											
LA ALDEA	0	524	1612	2836	3440	5396	6728	8074	9368	10835	12107	13384	
AGRETE	1621	3331	4906										
MOYA	3061	5840											
AZUAJE	3257	6171	6987										
TENOYA	4440	8087	11534										

CUADRO VI CAPACIDAD DE ARRASTRE DE SOLIDOS (Kg/eeg.) PARA D=0.085 m.

CAUDAL (m3/eeg.)

													_
CUENCA	100	100	300	400	500	600	700	800	900	1000	1100	1200	
GUINIGUADA.	1862	4182	6419	8035	10535								
TELDE	670	2573	4250	5962	7695								
GUAYADEQUE	3578	•											
TIRAJANA	308	1866	3573	5372	7009	8866	10506						
MASPALOMAS	435	1300	2161	3007	3823	4634	5441	6210					
ARGUINEGUIN	0	208	552	929	1349	1783	2225	2673					
HOGAN	644	1577											
LA ALDEA	0	0	588	1529	2589	3489	4609	5863	7001	8613	9788	8725	
AGRETE	1359	2965	4464										
MOYA	2823	5510											
AZUAJE	3004	5837	8591										
AYONST	4276	7866	11267										

CUADRO VII CAPACIDAD DE ARRASTRE DE SOLIDOS (Kg/eeg.) PARA D-0.105 m.

CRUDAL (m3/seg.)

	• • • • • •											
CUENCA	100	200	300	400	500	600	700	800	900	1000	1100	1200
ADAUDINIUD	1577	3805	5982	8035	10019							
TELDE	544	2079	3653	5283	6947							
GUAYADEQUE	3204											
TIRAJANA	7	1131	2618	4247	5756	7489	9032					
HASPALOHAS	262	1035	1839	2641	3420	4200	4978	5721				
ARGUINEGUIN	0	15	218	494	825	1180	1552	1933				
HOGAN	494	1323										
LA ALDEA	0	0	5	524	1323	2235	3242	4304	5352	6568	7638	8725
AGRETE	1112	2614	4037									
ноча	2830	5187	-									
AZUAJE	2758	5510	8202									
TENOYA	4115	7646	11002									

El problema fundamental radica en que no se tienen elaborados datos estadísticos sobre intensidades de precipitación que, sin duda, es el factor que más directamente influye en la escorrentía y producción de avenidas. Utilizando los mismos datos sobre intensidades, ambos métodos resultarán bastante más convergentes.

Los valores de los caudales máximos obtenidos en cada cuenca y para cada período de retorno se encuentran también en el gráfico I para el método de las isocronas y en el gráfico II para el método racional.

Por último, en los cuadros II al VII se recogen los resultados del cálculo de la capacidad de arrastre de sólidos en cada cauce, para los diferentes diámetros característicos utilizados y para diferentes caudales.

5.-CONCLUSIONES.

El presente trabajo ha permitido actualizar los "Estudios de Máximas Crecidas" del Centro de Estudios Hidrográficos (1.975), siguiendo la misma metodología de éstos y comparando, además, los resultados obtenidos con otra metodología, muy extendida en la actualidad, como es el método racional.

Ambos métodos, el de isocronas tal y como se ha utilizado en este estudio y el racional, presentan diferencias en sus resultados, a veces notables, debidas fundamentalmente a las distintas hipótesis establecidas en cuanto a distribución de intensidades de precipitación, siendo los caudales máximos obtenidos siempre superiores según el método de las isocronas.

Es necesario elaborar y dar un tratamiento estadístico a los datos pluviográficos existentes, de forma que se puedan establecer hipótesis sobre intensidades de lluvia más acordes con la realidad.

Por otra parte, un estudio sistemático de los volúmenes de agua interceptados por embalses permitiría acotar mejor los valores utilizados como coeficientes de escorrentía, en general bastante conservadores.

Evidentemente, ambos factores son los de mayor incidencia en la producción de escorrentía y formación de avenidas, por lo que una mejora de los resultados aquí expuestos pasa necesariamente por un conocimiento mayor de ambos.

Otro aspecto a destacar, común a ambas metodologías, es la consideración del tiempo de concentración como un parámetro fijo y característico de la cuenca, si bien en el método de las isocronas se ha obtenido a partir de estimaciones de las velocidades medias del agua y en el racional por aplicación de una fórmula empírica.

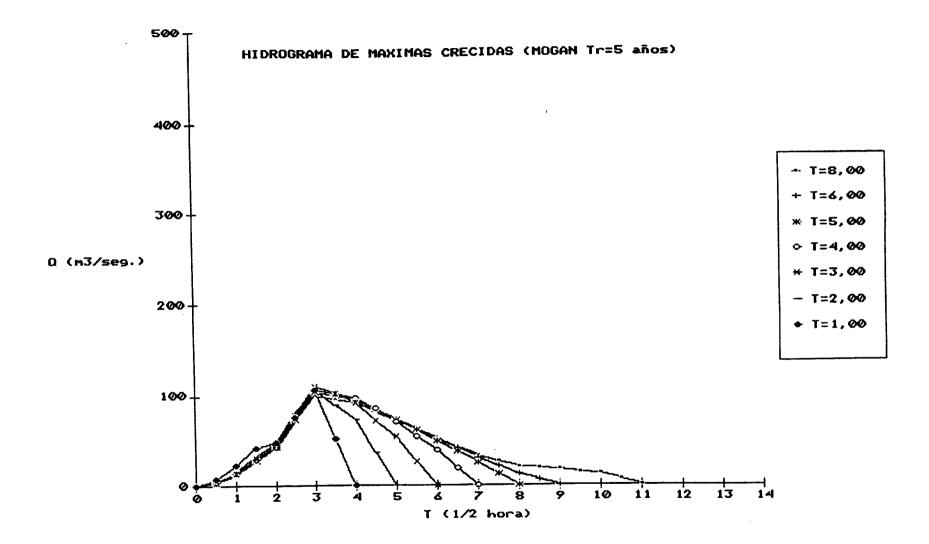
En la realidad esto no es así, puesto que la velocidad del agua durante la crecida es variable, dependiendo del caudal de aportación y las características del cauce. Este hecho está, además, intimamente ligado al fenómeno de laminación de la avenida que se produce a lo largo del cauce y que puede llegar a incidir de forma apreciable en el valor del caudal punta de la avenida.

La única forma de introducir estas consideraciones en los estudios de avenidas es mediante la puesta a punto de un modelo matemático que contemple el transporte de la onda de avenida en régimen transitorio o variable, tarca que, a pesar de su complejidad, podría ser abordada con los procedimientos de cálculo existentes en la actualidad. Como ventaja adicional cabría citar que, una vez que esté operativo el modelo, podrían obtenerse los hidrogramas no sólo en un determinado punto del cauce, sino a lo largo del mismo, aportando información, además, sobre el nivel de las aguas, zonas inundadas, etc.. Asímismo, podría estudiarse, con poco esfuerzo, la incidencia que determinadas obras en el cauce producirían en todos esos aspectos.

No obstante, sería absurdo plantearse un trabajo de tal envergadura – en ningún caso la tarea sería sencilla– sin antes disponer de datos más fiables sobre intensidades de lluvia y coeficientes de escorrentía, factores que, por otra parte, están relacionados entre sí, por lo que su estudio no debe plantearse por separado.

Por último, en cuanto a la cuantificación de la capacidad de arrastre de sólidos, conviene recordar que, debido a las hipótesis establecidas, los resultados han de considerarse

únicamente con carácter indicativo y teniendo en cuenta que no representan la aportación real de acarreos, sino la capacidad máxima que posee la corriente en un punto determinado del cauce -en este caso en la zona de desembocadura- para transportar material sólido por arrastre sobre el lecho.


Las Palmas de Gran Canaria, Enero de 1.991.

José Luis Lorenzo Riera. Ingeniero de Caminos, Canales y Puertos. ANEJOS

•

•

ANEJO Nº 3 BCO. ARGUINEGUIN

ISLA DE CHAN CANARIA ESTACION NUM. 160 BARRANGUILLO ANDRES

PRECEPTACIONES MAXIMAS (N. 24 HUHAS, ARUALES 1888)

LET DE DISTRIBUCION DE GUMULL

		• • • • • • • • • • • • • • • • • • • •								
Numere de Orden	xi.	X1 erdenedos	Frequencias	Tieñosi	FIRE	X (ma)				
1 .	47.4	6,2	U, U14		0.021	1.5				
2	64.3	17,4	0,042		0,010	10, 6				
3	72,3	17,4 19,2	U, U69		บุบรบ	14.3				
4	94.0	23.1	0,097		0,040	18, /				
2 3 4 5 6 7 8	97.5 42.7 83.6	23.3	u, 125		U, 1UU	26,3				
ė.	42.7	26,0 28,4	0,153		0,200	34,4				
7	83,4	28,4	U. 181		0,300	40,9				
8	40.3	117	0,208		D, ALMI	47,1				
	72,8	35.1	0.236	5	טרוב', ט	53,4				
10	6.2	40,7	0.04		0,5111	80,3				
11	25.3	40, 3	0,472		U (10)	68,4				
12	¥0, •	40.3	U, 319	5	11, 81717	77.0				
13	46.2	40, 3	9.347		11.3 (1	85,2				
14	40,3	42.7	0,375	10	OMAL	?6,∪				
15	62.6	46,2	0,403	. U	0,7,0	112,2				
16	28.4	47.4	0,433	• •	0,570	117,4				
17	10.3	47,4 47,5 57,2	0,431 0,45 3	しい	0.780	133,3				
18	68,2	51.2	U 486	1110	0,770	149,0				
19	71.6	62.6	0.514	ンロロ	0,978	185.5				
20	101 4	62.8	0.542	1000	0,333	201,2				
21	75.1	65.4	11 .67							
55	40.2	64,3	0.597							
22	62.8	5.86	ひ、たこう							
24 25	19 2	71.6	11.635							
25	33.2	72,5	0,681							
26	35 1	72.8	0,708							
27	47,3	75,1	U, 736							
28	84.0	78.5	(1, 104							
29	40,3	83,6	0,193							
30	23, 1	84.6	ti, 817							
ŠĬ	57,2	90.0	0.8.7							
35	90.0	90.6	0.85							
33	63.4	94.U 97.5	U 503							
34	144.5	97.5	0,431							
35	26,0	101,4	0.458							
36	17,4	144,5	0.986							
-•	•	• •	•							

Proube de Chi-cuadrede (Interveto de contienza del 95 %): El ajuste es aceptable ISLA DE GRAN CANARIA ESTACION NOM UP? MULAN - PLATA

PRECIPITACIONES MAXIMAS EN 24 HUBAS, ANUALLE (ma)

LET DE UISIRIBUCIUM DE GUMUEL

Numero						
Orden	x 1	X i ordenedos	Frecuencies	lenosi	f (x)	I (mm)
1	33,0	2.4	0,015		יניט, ט	-8.7
ż	20,2	2,4	0.044		U. 010	- 3, 1
2 5 6 7	60,5	3.3	0.074		0.070	-17, 8
4	44.9	3.5	U. 193		0 , 0 , 0	1, 4
5	54.2	●. ∪	41. 132		15, 11#5	6.6
6	24.0	7.5	11, 162		61, 21113	11,6
7	7,5	7.9	U, 171		0,300	13.7
8	34.4	8. *	0,321	_	19,6109	
•	2,7	10,0	0.379	5	11, 100	21.4
10	, 0	15,5	0.279	•	U, CHH	- S. S.
11		16,0	0,314	_	0,00	32.7
12	35,1	16.5	U. 338	5	U, BUU	37, 3 63, 7
13	13,5	19.0	U, 568		0,8.0	
14	45.0	19.3	U. 117	10	11, 700	47.8
15	75.0	50,5	0.426	20	U, 97.0	53.9
16	38.6	20,2	0,456	فدنو	U, 7611	63.1
17	38,6 32,0	\$2.5 20.2	0,485	20	U, 78U	72,9
18	53,2	24.U 25.6	0,515	1143	(1), 95(1)	A2,7
19	19,0	25.6	0.54	500	0,978	105.2
20	26, 2	24.2	0.574	1000	0,444	114,9
žĭ	16.U	35.0	0.6.13			
55	2,6 22,5 19,3	32.4	11,632			
žš	22.5	33.0 33.0 35.1	U.562			
24	19.3	33.0	0,611			
25	44.0	35.1	0.721			
5.6	12,4	38.6	11 /50			
žž	25, 6	38.6	11 779			
28	8,9	44,0	0.899			
29	16,5	44 9	9.8.8			
30	3, 3	45.0	U. F68			
31	งร์;้อ	\$1.2	() 477			
25.	10.0	54,2	0.4.6			
35	3,5	60.5	0.5.6			
	20, 3	75.0	U, V85			
34	20, 2	.,,0	2,.03			

Prueba de Chi-cuadredo lintervato de contienza del 95 %: El ajuste es acaptable

ISLA DE GRAN CANARIA ESTACIUN NUM. 127 NAMERITAS - VIVERU

PRECIPITACIONES MAXIMAS EN 24 HUHAS, ANUALES (000)
LET DE DISTRIBUCION DE CUMBEL

		400000000000000000000000000000000000000		*****		
Numero de Orden	X1	X1 erdenedos	frecuencies	1(0/05)	F(X)	X (mm)
1	35,6	25,5	0.014		0.001	17,8
ż	77.3	24.5	0.4161		บ,บาบ	17,8
š	95.4	32,0	0,068		0.030	21.6
1 2 3 4 5 6 7 8 9	43 6	14,2	0,025		0.060	₹4.1
5	66.4	35,3	0,132		0,100	33.9
•	26.3	37.0	0,149		0,200 0,300	42.5
7	55,4	36.9	0.176		0,4110	55 6
8	65,2	60.0	0, 293	2	U. 511U	61 9
. 7	65,2 178,3 35,3	44.2	0,233	•	U, 6HU	84 11
10	33,3	45.6	0,594	-	U, 700	77.4
11	45, 6 89, 4	\$1.0 \$1.2	0 111	5	U, BUNJ	88.3
12 · 13	89.4 51.6	51.6	0,311 0,370	•	U 8:01	45,7
14	12.2	51.8	1) 165	10	U. VUU	95,7 105, 8
15	75.4	51.8 55.4	0.372	20	ひ、ヤンロ	122.5
16	73.5 25.5	61.3	(1 4 1 7	25	D. 49()	127,8
17	78,5	61.6	Ð. 446	50	USYLU	144.2
18	66.8	64.0		100	ひっつい	160,5
19	86.4	64,0	ひっといり	500	0.778	178.0
žΰ	61.4	45 2	0,521	1000	U . 9 v 9	214,2
žĭ	82,1	66.4	10.554			
5.5	51,2	44.9	0,541			•
ŽŠ	53,0	67.3	U, 6'J8			
24	83.4	73.5	0.635			
52	34.2	77.3	0,662			
26	34,2	69.3 73.5 77.3 77.7 78.5	0,687			
27	61,3	78,5	U, 715			
26	174,7	82,1 83,4 83,4 85,U	0,743			
54	69.3	83,4	0,770			
30	32.0	83.4	0 797 0 824			
31 ,	83.0		11,8,1			
3.5	64.0	86.4	U # 8			
33	64.0	89.4 95.4	0,595			
34 35	117.U 40.U	119,0	ů, v šž			
36	36.9	124,7	6, 457			
37	51, Ú	178,3	U, 486			
•	.,.		- •			

Prueba de Chi-cuadrodo (Intervato de confianza del 95 %): El ajuste es aceptable

PRECIPITACIONES MAXIMAS (N. 24 HURAS, ANUALES 1889) LET DE DISTRIBUCIUM DE GUMUEL

Numera da Ordan	x 1	X1 ordenedas	Frecuencias	Tiefos)	Fixi	X (mm)
			0,014	*******	וניט,ט	-6.7
1	39,3 48,5	12.3 12.5	0.042		0.110	-6.7 1.6
Ž.	48.2	15.7	0.067		ti 070	5.U
,	83,5	13.0 15.3	0.077		0.040	8.9
ŧ	97.2 55.4	15.7	0,125		0.100	15.8
2345	27.3	20.2 21.1 25.0 27.3	U, 153		0, 200 0, 300	23.1
,	48.5	21.1	ti 181		0,300	29.1
	30.0	25.0	0.228		0,400	34.7
•	58.5	27.3	U, 230	5	0,500	41), 6
10	58, 5 15, 3	24.0	(1,264		(1, 6(14)	46.6
ii	15.7 45.4	30.0	0,272	_	0.700	54.U 63.6
12	45,4	30.0	0.317	5	0.800 0.850	70,1
13	46.5	30.0	11 1/4/	444	0,670	79 (1
14	33,7	30,3	0.375	10 20	0.7.0	79.U 93.7
15	46.5 33.7 49.0 31.0 122.0 107.5 53.4	31,0 32,1	0,403	23	0,900 0,950 0,960	78.4 112.8
10	31,0	32.1	0.411	50		112.8
17	122,0	33.7	U 454 U 486	100	11 774	127,1
18	107,5	33.7	U.514	Suu	U. 778	160,1
19	53.4	\$2,3	0,543	1000	0.999	174,3
50	82,2 68,3 42,5	42,5 43,0 45,4	0.562		• •	
21	98,2	46.5	0.527			
55	36.3	48.5	0 625			
23	30,0 12,3	415	81 A 3 3			
24	56.0	69.0	U. 671			
25	20.2	49.0 53.4 54.0 55.4	13 (1)5			
26 27	30,0	56.0	U, 736			
28	34 D	55.4	0 766			
29	54, D 25, U	50,5	0,772			
30	13,0	68.3	71 819			
31	32.1	72.3	13 847			
35	43.0	58,5 68,3 72,3 82,2 83,5 87,2 107,5	0.63			
33	72.3 21.1	83,5	0.493			
34	21,1	87.2	0,911			
35	12.5	107,5	0.Y.			
36	33,2	122,0	0,786			

Pruebo de Chi-cuedredu tintervalo de contionzo del 75 %): El ajuste es ocepiable

ISLA DE GRAN CANARIA ESTACIUN NUM. U93 VENEGUENA - CASAS

PRECIPITACIONES MAXIMAS EN 24 MUNAS, ANUALES (MM)

FEA DE DIZIBIBACION DE COMRFF

Numero de Orden	x1	x1 ordenedos	Frequencies	1 teños)	1 (2)	g (mm)		
	20,0	9.4	0,014		0,091	-6.2 2.2 5.5		
•	43,0	10.3	0.043		0,010	2.2 5.5 9.6		
į	8515	11,5	0 ,071		ט,ט,ט	9:6		
ž	71.0	14.0	0.100		0,040	16,5		
š	101.5	15.5	0,129		0,100 0,200	23.9		
123454789	21.0	15.5	0.157		0, 200	20.9		
ž	47.8	20.5	0 176		0,300	19, 9		
À	27,5	21.0	0,214		0,400 0,500	41.3		
ě	76.U	26.0	0.243	5	0.6(1)	41.6		
10	14.0	27.5	0.271	••	U, 700	55.0		
11	15.5	28.0	0.390	. 5	0.800	64.6		
12	52,5	30,2	0.327	,	0.850	11.2		
13	40,0	30.3	0,357	ΙU	0, 000	BU, 1		
14	26.0	34.3	0, 396	20	0.750	نَ رُبُّا		
15	110,0	35,2	0,414	25	0.460	99.7		
16	56.4	36,4	0.443	50	U\$V,U	114, 2		
17	64.6	40.0	U 471	100	U, ?7U	1.8.6		
18	60,5	40.3	0,500	500	U, 448	161.9		
19	PO' 5	41,0	บ.วรุง	1000	0.000	176,2		
50	60.3	43.0 47.6 52.5 55.2	/دُر (0	1000				
21	36.4	47.6	0.588					
5.5	9,4	52.5	0, 414					
23	30.3	55.3	U, 643 U, 671					
24	19.3	20.4	0,700					
55	34.3	59.2	0.727					
54	37.2	4U, 3	ŭ: : ; ;					
\$7	35, 2 11, 5	8U. S	0.756					
58	11,5	64.6	11, 814					
29	40, 3	71,0	11, 843					
30	20.5	76.0	U, 871					
31	55, 2	A 5 . 5	ti sent					
35	102.0	85.5 101,5	0. 929					
33	30.2	102.0	0, 437					
34	10.3	110,0	0,786					
35	41.0	110,0	٥,٠٥٥					

Prueba de (hi-cuedrado lintervato de contianza del VS %): El ajuste es aceptable

RELACION DE ESTACIONES PLUVIOMETRICAS.

Cuenca: Bco. Mogán.

NUM.	NOMBRE	X	Y	Z
020	Mogán - Pueblo	428.950	3.084.365	265
093	Veneguera - Casas	428.150	3.086.750	255
097	Mogán – Playa	424.880	3.076.980	5
127	Nameritas - Vivero	433.470	3.089.755	1005
160	Barranquillo Andrés	433.200	3.085.720	650

CUENCA: BCO. MOGAN.

- Superficie (Km.²): 33,92

- Longitud del Cauce Principal (Km.): 34,8

- Desnivel (m.): 1.400

- TC (isocronas): 3,1 h.

- TC (Giandotti): 2,6 h.

- Velocidades:

5	Km/h. desde	0	hasta	300 m.
6	Km/h. desde	300	hasta	800 m.
7	Km/h desde	800	hasta	1.400 m.

- Coeficientes de escorrentía:

0,77	desde isocrona	0 h.	hasta isocrona	1 h.
0,80	desde isocrona	1 h.	hasta isocrona	2,5 h.
0,83	desde isocrona	2,5 h.	hasta isocrona	3 h.

medio: 0,80

- Precipitación en % de la precipitación de 24 h..

Duración del temporal (h.)	1	2	3	4	5	6	8
90	35	48	62	73	79	83	89

- Datos del cauce:

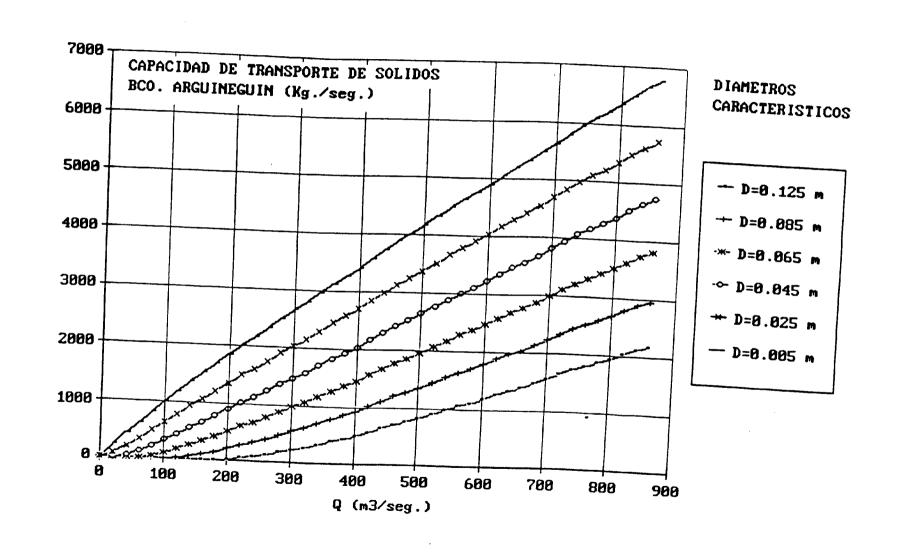
Ancho base (m):20
Angulo talud: 90°
Pendiente: 0,001

ANEJO Nº 4 BCO. MOGAN

CALCULO DE LAS MAXIMAS AVENIDAS (m³/seg.).

Cuenca: ARGUINEGUIN

METODO RACIONAL


		MILTOD	UKACIONAL	
Tr=5 años	Tr=25 años	Tr=50 años	Tr=100 años	Tr=500 años
213.92	325.39	371.57	417.36	523.34
		METODO DE	LAS ISOCRONA	aS .
Tr=5 años	Tr=25 años	Tr=50 años	Tr=100 años	Tr=500 años
355.00	536.40	611.50	686.00	858.50
	SANTI		484.97	
	GREAGER		616.42	
	FORTI		551.62	
	QUIJANO		351.65	
	ZAPATA		320.86	
	KUICKLING	ì	329.09	
	TURAZZA		764.53	
	HERAS		715.17	

٠ - .

CAPACIDAD DE TRANSPORTE DE SOLIDOS (Kg/seg.) SEGUN DIAMETROS

CAUDAL D=0.105 m D=0.085 m D=0.065 m D=0.045 m D=0.025 m D=0.005 m (m3/seg.)

0	0.0	0.0	0.0	0.0	0.0	0.0
20	0.0	0.0	0.0	0.0	68.2	234.4
40	0.0	0.0	0.0	39.4	202.9	435.7
60	0.0	0.0	0.7	124.4	343.6	626.1
80	0.0	0.0	40.3	223.7	487.6	812.1
100	0.0	0.0	102.9	331.2	633.8	995.5
120	0.0	11.2	178.1	445.1	782.7	1178.5
140	0.0	49.6	260.5	561.6	931.1	1358.1
160	0.0	93.0	336.7	666.1	1062.9	1517.0
180	0.0	143.9	417.7	773.9	1196.6	1676.6
200	15.4	208.1	512.4	896.3	1345.6	1852.0
220	47.7	277.6	610.3	1020.2	1494.9	2026.4
240	77.8	333.2	687.6	1118.4	1613.8	2166.3
260	119.7	402.9	781.0	1234.3	1751.9	2326.6
280	170.8	481.6	883.8	1360.0	1900.1	2497.2
300	218.1	551.7	974.6	1470.9	2031.0	2648.2
320	262.8	616.4	1058.0	1572.5	2150.9	2786.7
340	324.1	701.3	1164.4	1699.8	2298.8	2955.1
360	387.9	787.3	1271.2	1826.6	2445.4	3121.6
380	441.6	859.4	1360.8	1933.4	2569.5	3263.2
400	494.1	929.0	1446.8	2035.9	2688.5	3398.8
420	563.9	1019.0	1556.0	2163.7	2834.8	3563.7
440	635.5	1110.1	1665.6	2291.5	2980.7	3727.7
460	704.1	1196.9	1769.7	2412.8	3119.0	3883.2
480	756.8	1264.0	1851.0	2508.3	3229.0	4007.9
500	824.7	1348.5	1951.7	2625.0	3361.7	4156.7
520	902.4	1444.0	2064.5	2754.7	3508.3	4320.3
540	980.2	1539.1	2176.1	2882.7	3652.6	4481.0
560	1053.9	1628.7	2281.3	3003.4	3788.9	4632.8
580	1111.1	1698.9	2364.5	3099.7	3898.4	4755.9
600	1180.2	1782.6	2462.5	3212.0	4025.0	4897.0
620	1262.3	1880.8	2576.3	3341.3	4169.8	5057.3
640	1330.1	1962.2	2671.3	3449.7	4291.8	5193.1
660	1390.0	2034.4	2755.7	3546.6	4401.3	5315.4
680	1466.6	2125.3	2860.7	3665.5	4534.2	5462.5
700	1551.6	2225.3	2975.5	3795.0	4678.4	5621.3
720	1636.8	2325.3	3089.9	3923.8	4821.5	5778.8
740	1723.4	2426.5	3205.5	4053.6	4965.6	5937.3
760	1794.5	2510.0	3301.4	4161.9	5086.5	6070.9
780	1857.5	2584.3	3387.1	4259.2	5195.4	6191.7
800	1933.1	2672.6	3487.9	4372.5	5321.4	6330.4
820	2021.2	2774.5	3603.4	4501.5	5464.0	6486.6
840	2102.8	2869.0	3710.7	4621.6	5596.8	6632.4
860	2167.0	2943.9	3796.4	4718.3	5704.7	6751.5

TEMPORAL DE 5 HORAS DE DURACION.

PERIODO DE RETORNO: 500 AROS

APORTACIONES (*1000 m3) CAUDAL (m3/meg.)

HORA APORTAMAR CAUDAL APORACUM 0.0 0.00 0.0 0.00 0.5 34.95 34.95 19.4 80.26 44.6 115.21 1.0 148.49 82.5 263.71 1.5 2.0 197.36 109.6 461.07 268.49 149.2 729.56 2.5 3.0 385.12 214.0 1114.68 3.5 569.26 316.3 1683.93 815.73 453.2 2499.66 4.0 4.5 1206.87 670.5 3706.53 5.0 1542.76 857.1 5249.29 1458.94 810.5 6708.23 5.5 6.0 1353.34 751.9 8061.57 6.5 1184.78 658.2 9246.35 7.0 1011.52 562.0 10257.87 7.5 852.79 473.8 11110.66 672.49 373.6 11783.15 8.0 8.5 504.55 280.3 12287.70 9.0 322.05 178.9 12609.76 9.5 151.51 84.2 12761.27 10.0 0.00 0.0 12761.27

CUENCA: ARGUINEGUIN

TEMPORAL DE 8 HORAS DE DURACION. PERIODO DE RETORNO: 500 AÑOS

APORTACIONES (*1000 m3) CAUDAL (m3/meg.)

HORA APORTAMAR CAUDAL APORACUM 0.0 0.00 0.0 0.00 0.5 33.97 18.9 33.97 1.0 78.00 43.3 111.97 1.5 144.31 80.2 256.28 2.0 191.80 106.6 448.08 2.5 260.73 144.9 708.81 3.0 373.82 207.7 1082.64 3.5 552.52 307.0 1635.16 4.0 791.95 440.0 2427.11 4.5 1172.02 651.1 3599.13 1498.11 832.3 5097.24 5.0 5.5 1422.71 790.4 6519.95 1327.90 737.7 7847.85 6.0 1175.77 653.2 9023.61 6.5 7.0 1016.04 564.5 10039.65 7.5 879.00 488.3 10918.65 8.0 730.10 405.6 11648.75 600.76 333.8 12249.51 8.5 9.0 466.65 259.3 12716.16 9.5 369.25 205.1 13085.41 10.0 284.98 158.3 13370.39 10.5 269.96 150.0 13640.36 245.79 136.6 13886.15 11.0 11.5 206.40 114.7 14092.55 12.0 155.34 86.3 14247.89 73.08 40.6 14320.98 12.5 13.0 0.00 0.0 14320.98

CUENCA: ARGUINEGUIN

TEMPORAL DE 6 HORAS DE DURACION.

PERSODO DE RETORNO: 500 AROS

HORA	APORTAMAR	CAUDAL APORACUM
0.0	0.00	0.0 0.00
0.5	34.95	19.4 34.95
1.0	80.26	44.6 115.21
1.5	148.49	82.5 263.71
2.0	197.36	109.6 461.07
2.5	268.32	149.1 729.40
3.0	384.74	213.7 1114.13
3.5	568.56	315.9 1682.69
4.0	814.80	452.7 2497.50
4.5	1205.74	669.9 3703.24
5.0	1541.26	856.3 5244.49
5.5	1463.85	813.2 6708.34
6.0	1366.38	759.1 8074.72
6.5	1202.90	668.3 9277.62
7.0	1029.16	571.8 10306.78
7.5	873.38	485.2 11180.16
8.0	709.80	394.3 11889.96
8.5	569.43	316.4 12459.39
9.0	416.91	231.6 12876.31
9.5	291.33	161.9 13167.64
10.0	162.92	90.5 13330.56
10.5	76.65	42.6 13407.21
11.0	0.00	0.0 13407.21

TEMPORAL DE 1 HORAS DE DURACION. PERIODO DE RETORNO: 500 AROS

APORTACIONES (*1000 m3) CAUDAL (m3/seg.) APORTACIONES (*1000 m3) CAUDAL (m3/seg.)

CUENCA: ARGUINECUIN

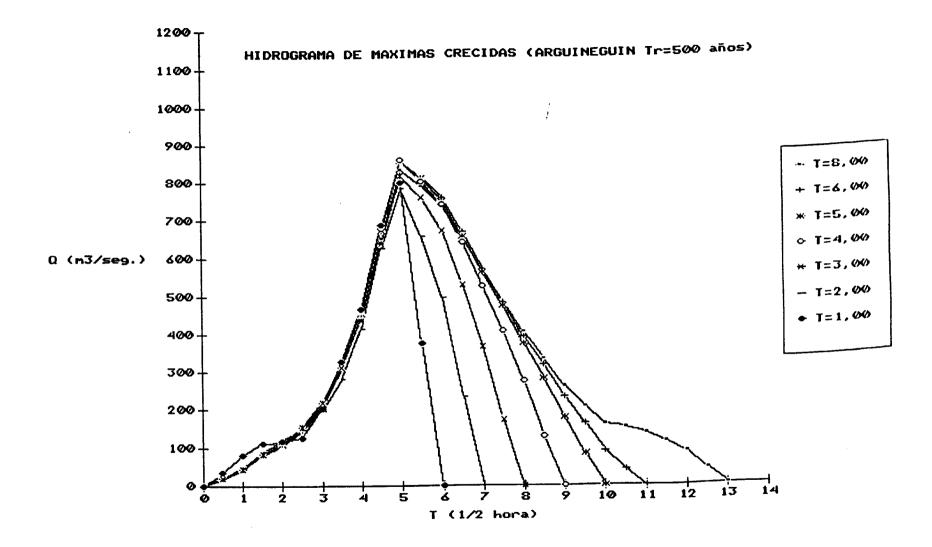
TEMPORAL DE 2 HORAS DE DURACION. PERIODO DE RETORNO: 500 AROS

HORA	APORTAMAR	CAUDAL	APORACUM
0.0	0.00	0.0	0.00
0.5	62.35	34.6	62.35
1.0	143.19	79.6	205.55
1.5	202.56	112.5	408.11
2.0	208.91	116.1	617.02
2.5	226.37	125.8	843.39
3.0	363.19	201.8	1206.59
3.5	589.11	327.3	1795.69
4.0	838.33	465.7	2634.03
4.5	1235.64	686.5	3869.67
5.0	1439.76	799.9	5309.43
5.5	677.34	376.3	5986.77
6.0	0.00	0.0	5986.77

HORA	APORTAMAR	CAUDAL	APORACUM
0.0	0.00	0.0	0.00
0.5	38.56	21.4	38.56
1.0	88.55	49.2	127.11
1.5	163.83	91.0	290.94
2.0	217.75	121.0	508.69
2.5	265.26	147.4	773.96
3.0	353.80	196.6	1127.76
3.5	504.31	280.2	1632.07
4.0	743.05	412.8	2375.11
4.5	1128.47	626.9	3503.58
5.0	1408.82	782.7	4912.40
5.5	1183.03	657.2	6095.43
6.0	890.38	494.7	6985.80
6.5	418.88	232.7	7404.69
7.0	0.00	0.0	7404.69

CUENCA: ARGUINEGUIN

TEMPORAL DE 3 HORAS DE DURACION. PERIODO DE RETORNO: 500 AROS


APORTACIONES (*1000 m3) CAUDAL (m3/seg.)

CUENCA: ARGUINEGUIN

TEMPORAL DE 4 HORAS DE DURACION. PERIODO DE RETORNO: 500 AÑOS

HORA	APORTAMAR	CAUDAL	APORACUM
0.0	0.00	0.0	0.00
0.5	35.77	19.9	. 35.77
1.0	82.15	45.6	117.92
1.5	151.98	84.4	269.90
2.0	202.00	112.2	471.89
2.5	274.62	152.6	746.52
3.0	393.77	218.8	1140.29
3.5	560.58	311.4	1700.67
4.0	784.95	436.1	2485.83
4.5	1150.49	639.2	3636.32
5.0	1473.21	818.4	5109.52
5.5	1367.20	759.6	6476.72
6.0	1209.83	672.1	7686.55
6.5	954.37	530.2	8640.93
7.0	659.26	366.3	9300.18
7.5	310.15	172.3	9610.34
8.0	0.00	0.0	9610.34

HORA	APORTAMAR	CAUDAL	APORACUM
0.0	0.00	0.0	0.00
0.5	35.77	19.9	35.77
1.0	82.15	45.6	117.92
1.5	151.98	84.4	269.90
2.0	202.00	112.2	471.89
2.5	274.62	152.6	746.52
3.0	393.77	218.8	1140.29
3.5	582.08	323.4	1722.37
4.0	834.32	463.5	2556.69
4.5	1220.32	678.0	3777.01
5.0	1545.23	858.5	5322.23
5.5	1445.24	802.9	6767.47
6.0	1335.04	741.7	8102.51
6.5	1157.46	643.0	9259.97
7.0	948.26	526.8	10208.23
7.5	736.12	409.0	10944.35
8.0	496.34	275.7	11440.69
8.5	233.50	129.7	11674.19
9.0	0.00	0.0	11674.19

TEMPORAL DE 5 HORAS DE DURACION.

PERIODO DE RETORNO: 100 AÃOS

APORTACIONES (*1000 m3) CAUDAL (m3/meg.)

CUENCA: ARGUINEGUIN

TEMPORAL DE 6 HORAS DE DURACION.

PERIODO DE RETORNO: 100 AÑOS

APORTACIONES (*1000 m3) CAUDAL (m3/meg.)

HORA	APORTAMAR	CAUDAL	APORACUM
0.0	0.00	0.0	0.00
0.5	27.19	15.1	27.19
1.0	62.43	34.7	89.62
1.5	115.61	64.2	205.23
2.0	154.41	85.8	359.64
2.5	211.05	117.3	570.69
3.0	303.99	168.9	874.68
3.5	451.85	251.0	1326.53
4.0	649.93	361.1	1976.46
4.5	964.90	536.1	2941.36
5.0	1232.18	684.5	4173.55
5.5	1165.78	647.7	5339.32
6.0	1081.74	601.0	6421.06
6.5	947.21	526.2	7368.28
7.0	809.06	449.5	8177.34
7.5	681.91	378.8	8859.25
8.0	538.13	299.0	9397.39
8.5	403.42	224.1	9800.81
9.0	257.53	143.1	10058.34
9.5	120.49	66.9	10178.83
10.0	0.00	0.0	10178.83

	APORTAMAR	CRUCAL	10001CHM
HOKA	APORTADAR	CAUDAL	APORACUH
0.0	0.00	0.0	0.00
0.5	27.19	15.1	27.19
1.0	62.43	34.7	89.62
1.5	115.61	64.2	205.23
2.0	154.41	85.8	359.64
2.5	210.93	117.2	570.56
3.0	303.69	168.7	874.26
3.5	451.31	250.7	1325.56
4.0	649.21	360.7	1974.77
4.5	964.01	535.6	2938.79
5.0	1230.99	683.9	4169.78
5.5	1169.55	649.8	5339.33
6.0	1091.82	606.6	6431.15
6.5	961.21	534.0	7392.36
7.0	822.83	457.1	8215.19
7.5	698.23	387.9	8913.43
8.0	567.78	315.4	9481.21
8.5	455.25	252.9	9936.46
9.0	333.58	185.3	10270.03
9.5	232.78	129.3	10502.82
10.0	130.28	72.4	10633.10
10.5	60.95	33.9	10694.05
11.0	0.00	0.0	10694.05

CUENCA: ARGUINEGUIN

TEMPORAL DE 8 HORAS DE DURACION.

PERIODO DE RETORNO: 100 AROS

0.5

10.5

11.0

11.5

12.0

12.5

13.0

APORTACIONES (*1000 m3) CAUDAL (m3/seg.)

HORA APORTAMAR CAUDAL APORACUM 0.0 0.00 0.0 0.00 26.42 14.7 26.42

•.•		• • • •	
1.0	60.67	33.7	87.10
1.5	112.35	62.4	199.45
2.0	150.06	83.4	349.51
2.5	204.96	113.9	554.46
3.0	295.08	163.9	849.54
3.5	438.58	243.7	1288.12
4.0	631.00	350.6	1919.12
4.5	937.05	520.6	2856.17
5.0	1196.52	664.7	4052.69
5.5	1136.68	631.5	5189.37
6.0	1061.07	589.5	6250.44
6.5	939.39	521.9	7189.83
7.0	812.01	451.1	8001.84
7.5	702.14	390.1	8703.99
8.0	583.36	324.1	9287.35
8.5	479.72	266.5	9767.06
9.0	372.85	207.1	10139.91
9.5	294.89	163.8	10434.80
10.0	227.89	126.6	10662.69

215.96 120.0 10878.65

196.73 109.3 11075.38

165.19 91.8 11240.57

124.22 69.0 11364.79

58.12 32.3 11422.90

0.00 0.0 11422.90

CUENCA: ARGUINEGUIN
TEMPORAL DE 1 HORAS DE DURACION.
PERIODO DE RETORNO: 100 AÑOS

APORTACIONES (*1000 m3) CAUDAL (m3/seg.)

HORA APORTAMAR CAUDAL APORACUM 0.0 0.00 0.0 0.00 0.5 48.50 26.9 48.50 1.0 111.38 61.9 159.89 1.5 157.75 87.6 317.64 164.08 91.2 481.72 2.0 2.5 179.84 99.9 661.56 3.0 288.82 160.5 950.38 470.49 261.4 1420.86 3.5 4.0 672.02 373.3 2092.89 4.5 992.41 551.3 3085.29 5.0 1151.31 639.6 4236.61 5.5 538.64 299.2 4775.25 0.00 0.0 4775.25 6.0

CUENCA: ARGUINEGUIN

TEMPORAL DE 2 HORAS DE DURACION. PERIODO DE RETORNO: 100 AÑOS

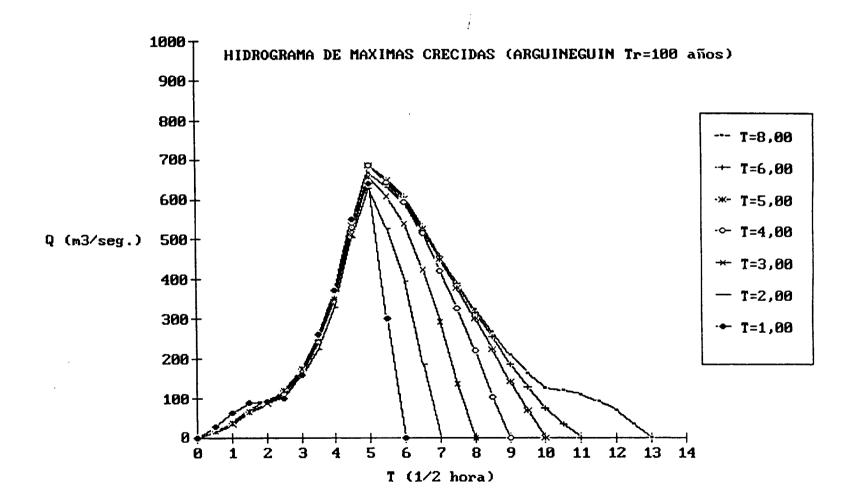
APORTACIONES (*1000 m3) CAUDAL (m3/meg.)

HORA	APORTAMAR	CAUDAL	APORACUM
0.0	0.00	0.0	0.00
0.5	30.00	16.7	30.00
1.0	68.88	38.3	98.88
1.5	127.55	70.9	226.43
2.0	170.35	94.6	396.78
2.5	208.77	116.0	605.55
3.0	280.09	155.6	885.64
3.5	402.17	223.4	1287.81
4.0	594.21	330.1	1882.02
4.5	904.68	502.6	2786.70
5.0	1127.59	626.4	3914.29
5.5	946.83	526.0	4861.13
6.0	712.00	395.6	5573.12
6.5	333.11	185.1	5906.23
7.0	0.00	0.0	5906, 23

CUENCA: ARGUINEGUIN

TEMPORAL DE 3 HORAS DE DURACION.

PERIODO DE RETORNO: 100 AÑOS


APORTACIONES (*1000 m3) CAUDAL (m3/meg.)

CUENCA: ARGUINEGUIN

TEMPORAL DE 4 HORAS DE DURACION.

PERIODO DE RETORNO: 100 AÑOS

	APORTAMAR			HORA	APORTAMAR	CAUDAL	APORACUM
0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
0.5	27.83	15.5	27.83	0.5	27.83	15.5	27.83
1.0	63.90	35.5	91.72	1.0	63.90	35.5	91.72
1.5	118.32	65.7	210.05	1.5	118.32	65.7	210.05
2.0	158.03	87.8	368.08	2.0	158.03	87.8	368.08
2.5	215.88	119.9	583.96	2.5	215.88	119.9	583.96
3.0	310.83	172.7	894.78	3.0	310.83	172.7	894.78
3.5	445.31	247.4	1340.10	3.5	462.03	256.7	1356.82
4.0	626.35	348.0	1966.45	4.0	664.75	369.3	2021.57
4.5	921.58	512.0	2888.03	4.5	975.97	542.2	2997.54
5.0	1178.27	654.6	4066.30	5.0	1234.84	686.0	4232.37
5.5	1093.77	607.7	5160.08	5.5	1155.77	642.1	5388.14
6.0	968.21	537.9	6128.28	6.0	1067.77	593.2	6455.91
6.5	763.43	424.1	6891.71	6.5	925.62	514.2	7381.54
7.0	527.18	292.9	7418.89	7.0	758.85	421.6	8140.39
7.5	246.64	137.0	7665.54	7.5	588.76	327.1	8729.15
8.0	0.00	0.0	7665.54	6 .0	396.90	220.5	9126.05
				8.5	185.69	103.2	9311.74
				9.0	0.00	0.0	9311.74

TEMPORAL DE 5 HORAS DE DURACION.

PERIODO DE RETORNO: 50 AÑOS

APORTACIONES (*1000 m3) CAUDAL (m3/meg.)

HORA APORTAMAR CAUDAL APORACUM 0.0 0.00 0.0 0.00 0.5 23.81 13.2 23.81 1.0 54.68 30.4 78.49 1.5 101.32 56.3 179.81 2.0 135.75 75.4 315.56 2.5 186.15 103.4 501.71 268.88 149.4 770.59 3.0 401.13 222.8 1171.71 3.5 4.0 578.33 321.3 1750.04 4.5 860.35 478.0 2610.39 5.0 1098.01 610.0 3708.40 1039.13 577.3 4747.54 5.5 6.0 964.43 535.8 5711.96 844.61 469.2 6556.58 6.5 721.62 400.9 7278.20 7.0 7.5 608.11 337.8 7886.31 8.0 480.09 266.7 8366.41 8.5 359.73 199.9 8726.14 229.65 127.6 8955.79 9.0 9.5 107.09 59.5 9062.88 10.0 0.00 0.0 9062.AA

CUENCA: ARGUINEGUIN

TEMPORAL DE 8 HORAS DE DURACION.

PERIODO DE RETORNO: 50 AROS

APORTACIONES (*1000 m3) CAUDAL (m3/meg.)

HORA APORTAMAR CAUDAL APORACUM 0.0 0.00 0.0 0.00 23.14 0.5 23.14 12.9 76.28 53.14 29.5 1.0 1.5 98.46 54.7 174.74 131.93 73.3 306.67 2.0 2.5 180.78 100.4 487.45 261.00 145.0 748.44 3.0 389.35 216.3 1137.80 3.5 561.49 311.9 1699.28 4.0 4.5 835.52 464.2 2534.80 1066.23 592.4 3601.03 5.0 1013.12 562.8 4614.15 5.5 945.80 525.4 5559.95 6.0 837.29 465.2 6397.24 6.5 723.87 402.2 7121.12 7.0 7.5 625.74 347.6 7746.86 519.96 288.9 8266.82 8.0 427.42 237.5 8694.24 8.5 332.32 184.6 9026.56 9.0 262.78 146.0 9289.34 9.5 203.24 112.9 9492.58 10.0 192.63 107.0 9685.21 10.5 175.54 97.5 9860.75 11.0 147.39 81.9 10008.14 11.5 12.0 110.77 61.5 10118.91 51.66 28.7 10170.56 12.5 0.00 0.0 10170.56 13.0

CUENCA: ARGUINEGUIN

TEMPORAL DE 6 HORAS DE DURACION.

PERIODO DE RETORNO: 50 AÑOS

HORA	APORTAMAR	CAUDAL	APORACUM
0.0	0.00	0.0	0.00
0.5	23.81	13.2	23.81
1.0	54.68	30.4	78.49
1.5	101.32	56.3	179.81
2.0	135.75	75.4	315.56
2.5	186.04	103.4	501.60
3.0	268.62	149.2	770.22
3.5	400.65	222.6	1170.87
4.0	577.69	320.9	1748.56
4.5	859.56	477.5	2608.12
5.0	1096.96	609.4	3705.08
5.5	1042.42	579.1	4747.50
6.0	973.21	540.7	5720.71
6.5	856.82	476.0	6577.53
7.0	733.71	407.6	7311.24
7.5	622.59	345.9	7933.83
8.0	506.44	281.4	8440.27
8.5	405.93	225.5	8846.20
9.0	297.57	165.3	9143.77
9.5	207.49	115.3	9351.27
10.0	116.17	64.5	9467.44
10.5	54.18	30.1	9521.62
11.0	0.00	0.0	9521.62

CUENCA: APQUINEQUIN

TEMPORAL DE 1 HORAS DE DURACION.

PERIODO DE RETORNO: 50 AÑOS

APORTACIONES (*1000 m3) CAUDAL (m3/meg.)

CUENCA: ARGUINEGUIN

TEMPORAL DE 2 HORAS DE DURACION.

PERIODO DE RETORNO: 50 AROS

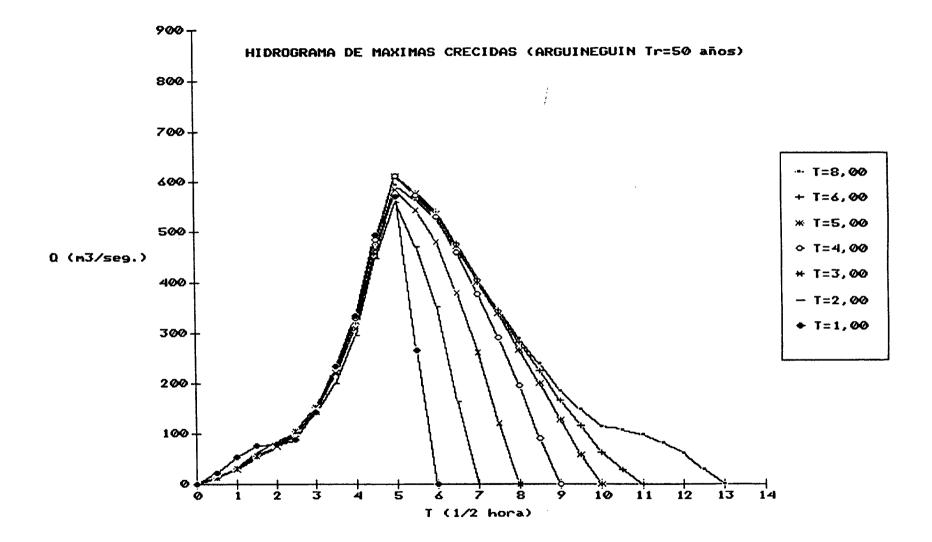
APORTACIONES (*1000 m3) CAUDAL (m3/meg.)

HORA	APORTAMAR	CAUDAL	APORACUM	HORA	APORTAMAR	CAUDAL	APORACUM
0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
0.5	42.48	23.6	42.48	0.5	26.27	14.6	26.27
1.0	97.55	54.2	140.03	1.0	60.33	33.5	86.60
1.5	138.27	76.8	278.30	1.5	111.78	62.1	198.38
2.0	144.63	80.4	422.93	2.0	149.77	83.2	348.15
2.5	159.73	88.7	582.66	2.5	184.29	102.4	532.44
3.0	256.74	142.6	839.40	3.0	248.21	137.9	780.65
3.5	419.36	233.0	1258.76	3.5	358.12	199.0	1138.78
4.0	600.29	333.5	1859.05	4.0	530.00	294.4	1668.78
4.5	887.25	492.9	2746.30	4.5	808.04	448.9	2476.82
5.0	1026.65	570.4	3772.95	5.0	1006.13	559.0	3482.95
5.5		266.0	4251.72	5.5	844.77	469.3	4327.73
6.0		0.0	4251.72	6.0	634.90	352.7	4962.63
3				6.5	296.08	164.5	5258.71
				7.0	0.00	0.0	5258.71

CUENCA: ARGUINEGUIN

TEMPORAL DE 3 HORAS DE DURACION.

PERIODO DE RETORNO: 50 AROS


APORTACIONES (*1000 m3) CAUDAL (m3/eeg.)

CUENCA: ARGUINEGUIN

TEMPORAL DE 4 HORAS DE DURACION.

PERIODO DE RETORNO: 50 AÑOS

) C3M	1000 =3,		(40,000)	KIONINGIONES (••••	
HORA	APORTAMAR	CAUDAL	APORACUM	HORA	APORTAMAR	CAUDAL	APORACUM
0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
0.5	24.37	13.5	24.37	0.5	24.37	13.5	24.37
1.0	55.96	31.1	80.34	1.0	55.96	31.1	80.34
1.5	103.69	57.6	184.03	1.5	103.69	57.6	184.03
2.0	138.94	77.2	322.97	2.0	138.94	77.2	322.97
2.5	190.41	105.6	513.37	2.5	190.41	105.8	513.37
3.0	274.93	152.7	788.30	3.0	274.93	152.7	788.30
3.5	395.53	219.7	1183.83	3.5	410.17	227.9	1198.47
4.0	557.69	309.9	1741.72	4.0	591.52	328.6	1789.99
4.5	822.72	457.1	2564.44	4.5	870.39	483.5	2660.38
5.0	1050.91	583.8	3615.35	5.0	1100.77	611.5	3761.15
5.5	975.69	542.0	4591.04	5.5	1030.75	572.6	4791.90
6.0	863.84	479.9	5454.88	6.0	952.35	529.1	5744.25
6.5	680.93	378.3	6135.81	6.5	825.50	458.6	6569.75
7.0	470.10	261.2	6605.91	7.0	677.04	376.1	7246.79
7.5	219.22	121.8	6825.13	7.5	525.09	291.7	7771.88
8.0	0.00	0.0	6825.13	8.0	353.92	196.6	8125.81
				8.5	165.05	91.7	8290.86
				9.0	0.00	0.0	8290.86

TEMPORAL DE 1 HORAS DE DURACION. PERIODO DE RETORNO: 25 AÑOS

APORTACIONES (*1000 m3) CAUDAL (m3/meg.)

HORA APORTAMAR CAUDAL APORACUM 0.00 0.0 0.00 0.0 36.46 20.3 36.46 0.5 83.72 46.5 120.18 1.0 118.78 66.0 238.96 1.5 2.0 125.09 69.5 364.05 139.37 77.4 503.42 2.5 3.0 224.22 124.6 727.64 3.5 367.64 204.2 1095.28 527.88 293.3 1623.16 4.0 781.37 434.1 2404.53 4.5 5.0 900.98 500.5 3305.51 5.5 418.29 232.4 3723.80 0.00 0.0 3723.80 6.0

CUENCA: ARGUINEGUIN

TEMPORAL DE 2 HORAS DE DURACION. PERIODO DE RETORNO: 25 AÑOS

APORTACIONES (*1000 m3) CAUDAL (m3/meg.)

HORA	APORTAMAR	CAUDAL	APORACUM
0.0	0.00	0.0	0.00
0.5	22.55	12.5	22.55
1.0	51.78	28.8	74.32
1.5	96.00	53.3	170.33
2.0	129.13	71.7	299.46
2.5	159.65	88.7	459.11
3.0	216.02	120.0	675.13
3.5	313.54	174.2	988.67
4.0	465.12	258.4	1453.79
4.5	710.57	394.8	2164.35
5.0	883.64	490.9	3047.99
5.5	741.89	412.2	3789.88
6.0	557.19	309.5	4347.07
6.5	258.68	143.7	4605.75
7.0	0.00	0.0	4605.75

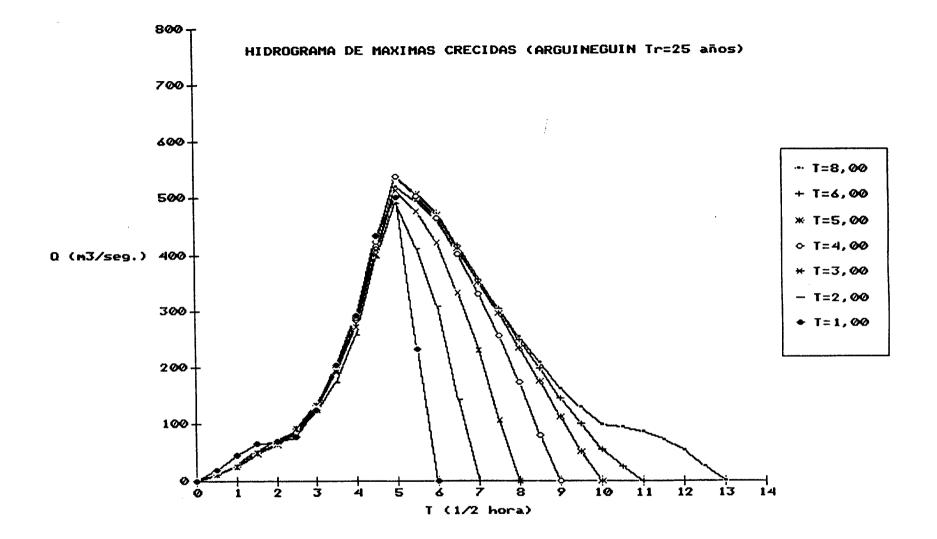
CUENCA: ARGUINEGUIN

....

TEMPORAL DE 3 HORAS DE DURACION.

PERIODO DE RETORNO: 25 AROS

APORTACIONES (*1000 m3) CAUDAL (m3/seg.)


CUENCA: ARGUINEGUIN

TEMPORAL DE 4 HORAS DE DURACION.

PERIODO DE RETORNO: 25 AÑOS

	-		
HORA	APORTAMAR	CAUDAL	APORACUM
0.0	0.00	0.0	0.00
0.5	20.92	11.6	20.92
1.0	48.03	26.7	68.95
1.5	89.06	49.5	158.01
2.0	119.79	66.6	277.80
2.5	164.79	91.6	442.59
3.0	238.73	132.6	681.32
3.5	345.25	191.8	1026.57
4.0	488.75	271.5	1515.32
4.5	722.98	401.7	2238.30
5.0	922.39	512.4	3160.68
5.5	856.56	475.9	4017.24
6.0	758.59	421.4	4775.84
6.5	597.75	332.1	5373.58
7.0	412.56	229.2	5786.14
7.5	191.53	106.4	5977.67
8.0	0.00	0.0	5977.67

HORA	APORTAMAR	CAUDAL	APORACUM
0.0	0.00	0.0	0.00
0.5	20.92	, 11.6	20.92
1.0	48.03	26.7	68.95
1.5	89.06	49.5	158.01
2.0	119.79	66. 6	277.80
2.5	164.79	91.6	442.59
3.0	238.73	132.6	681.32
3.5	357.82	198.8	1039.14
4.0	517.61	287.6	1556.75
4.5	763.93	424.4	2320.68
5.0	965.51	536.4	3286.19
5.5	904.61	502.6	4190.79
. 6.0	835.89	464.4	5026.68
6.5	724.49	402.5	5751.17
7.0	594.54	330.3	6345.70
7.5	460.90	256.1	6806.60
8.0	310.60	172.6	7117.20
8.5	144.20	80.1	7261.40
9.0	0.00	0.0	7261.40

TEMPORAL DE 5 HORAS DE DURACION.

PERIODO DE RETORNO: 5 AÑOS

APORTACIONES (*1000 m3) CAUDAL (m3/meg.)

HORA APORTAMAR CAUDAL APORACUM 0.0 0.00 0.0 0.00 6.8 12.26 0.5 12.26 40.40 28.15 15.6 1.0 52.38 29.1 92.78 1.5 71.81 39.9 164.59 2.0 100.67 55.9 265.26 2.5 148.14 82.3 413.39 3.0 226.45 125.8 639.85 3.5 331.71 184.3 971.55 4.0 500.46 278.0 1472.01 4.5 636.02 353.3 2108.04 5.0 603.05 335.0 2711.09 5.5 560.43 311.4 3271.52 6.0 491.23 272.9 3762.75 6.5 420.48 233.6 4183.24 7.0 353.93 196.6 4537.17 7.5 280.25 155.7 4817.42 8.0 209.30 116.3 5026.72 8.5 133.67 74.3 5160.39 9.0 60.92 33.8 5221.32 9.5 0.00 0.0 5221.32

CUENCA: ARGUINEGUIN

TEMPORAL DE 8 HORAS DE DURACION.

PERIODO DE RETORNO: 5 AÑOS

10.0

APORTACIONES (*1000 m3) CAUDAL (m3/seg.)

HORA	APORTAMAR	CAUDAL	APORACUM
0.0	0.00	0.0	0.00
0.5	11.91	6.6	11.91
1.0	27.35	15.2	39.26
1.5	50.90	28.3	90.17
2.0	69.79	38.8	159.96
2.5	97.76	54.3	257.72
3.0	143.81	79.9	401.53
3.5	219.83	122.1	621.35
4.0	322.07	178.9	943.42
4.5	486.03	270.0	1429.45
5.0	617.62	343.1	2047.07
5.5	587.65	326.5	2634.72
6.0	548.89	304.9	3183.62
6.5	485.68	269.8	3669.30
7.0	420.39	233.5	4089.69
7.5	362.66	201.5	4452.35
8.0	301.68	167.6	4754.03
8.5	247.36	137.4	5001.40
9.0	192.77	107.1	5194.17
9.5	152.17	84.5	5346.34
10.0	118.37	65.7	5464.66
10.5	112.30	62.4	5576.96
11.0	102.56	57.0	5679.52
11.5	86.09	47.6	5765.61
12.0		35.6	5830.09
12.5	29.39	16.3	5859.48
13.0	0.00	0.0	5859.48

CUENCA: ARGUINEGUIN

TEMPORAL DE 6 HORAS DE DURACION.

PERIODO DE RETORNO: 5 AROS

HORA	APORTAMAR	CAUDAL	APORACUM
0.0	0.00	0.0	0.00
0.5	12.26	6.8	12.26
1.0	28.15	15.6	40.40
1.5	52.38	29.1	92.78
2.0	71.81	39.9	164.59
2.5	100.61	55.9	265.20
3.0	148.01	82.2	413.20
3.5	226.20	125.7	639.41
4.0	331.37	184.1	970.78
4.5	500.04	277.8	1470.81
5.0	635.43	353.0	2106.25
5.5	604.65	335.9	2710.90
6.0	564.80	313.8	3275.70
6.5	497.31	276.3	3773.01
7.0	426.80	237.1	4199.81
7.5	362.07	201.1	4561.88
8.0	295.20	164.0	4857.08
8.5	236.08	131.2	5093.16
9.0	173.61	96.5	5266.77
9.5	120.39	66.9	5387.16
10.0	67.62	37.6	5454.78
10.5	30.82	17.1	5485.60
11.0	0.00	0.0	5485.60

TEMPORAL DE 1 HORAS DE DURACION.

PERIODO DE RETORNO: 5 AROS

5.0

6.0

APORTACIONES (*1000 m3) CAUDAL (m3/e+g.)

HORA APORTAMAR CAUDAL APORACUM 0.0 0.00 0.0 0.00 21.87 12.1 21.87 0.5 72.08 50.21 27.9 1.0 71.58 39.8 143.65 1.5 77.90 43.3 221.56 2.0 90.46 50.3 312.02 2.5 3.0 146.07 81.1 458.09 3.5 242.93 135.0 701.02 352.99 196.1 1054.01 4.0 525.55 292.0 1579.56 4.5

597.58 332.0 2177.14

0.00 0.0 2449.51

5.5 272.37 151.3 2449.51

CUENCA: ARGUINEGUIN

TEMPORAL DE 2 HORAS DE DURACION.

PERSODO DE RETORNO: 5 AÑOS

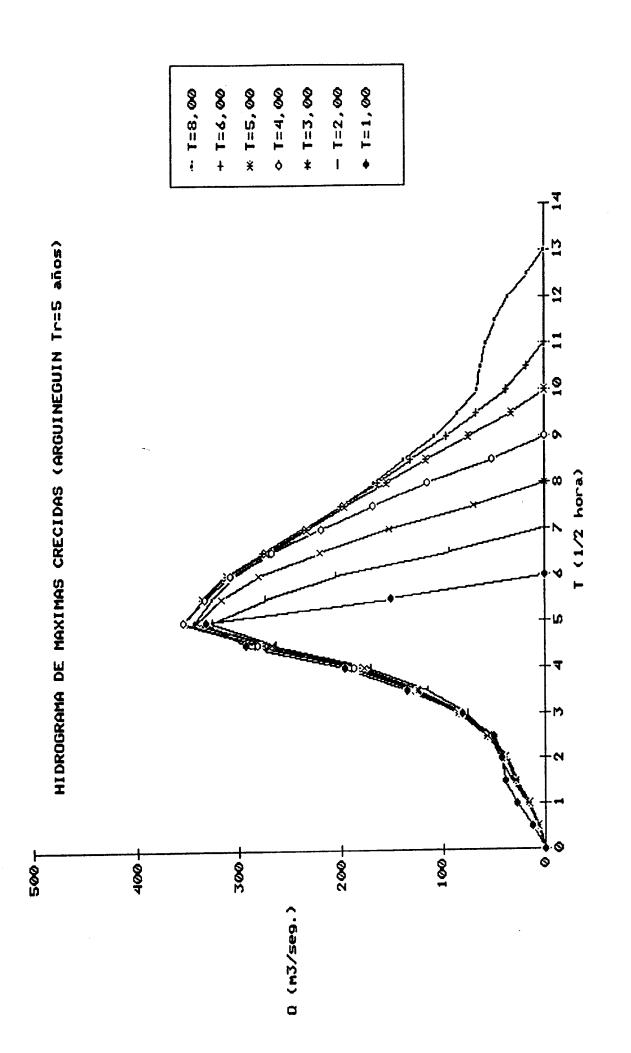
APORTACIONES (*1000 m3) CAUDAL (m3/meg.)

HORA	APORTAMAR	CAUDAL	APORACUM
0.0	0.00	0.0	0.00
0.5	13.52	7.5	13.52
1.0	31.05	17.3	44.57
1.5	57.79	32.1	102.36
2.0	79.23	44.0	181.59
2.5	100.21	55.7	281.80
3.0	138.51	76.9	420.31
3.5	206.18	114.5	626.48
4.0	308.63	171.5	935.11
4.5	475.25	264.0	1410.36
5.0	587.85	326.6	1998.21
5.5	493.45	274.1	2491.66
6.0	369.55	205.3	2861.21
6.5	168.44	93.6	3029.65
7.0	0.00	0.0	3029.65

CUENCA: ARGUINEGUIN

TEMPORAL DE 3 HORAS DE DURACION.

PERIODO DE RETORNO: 5 AÑOS


APORTACIONES (*1000 m3) CAUDAL (m3/seg.)

CUENCA: ARGUINEGUIN

TEMPORAL DE 4 HORAS DE DURACION.

PERIODO DE RETORNO: 5 AÑOS

453 (-1000 #31	CHODAL	, (ms/eeg.)	AT ORTHOTOMES (1000 25,	choone	()
HORA	APORTAMAR	CAUDAL	APORACUM	HORA	APORTAMAR	CAUDAL	APORACUM
0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
0.5	12.54	7.0	12.54	0.5	12.54	7.0	12.54
1.0	28.81	16.0	41.35	1.0	28.81	16.0	41.35
1.5	53.61	29.6	94.96	1.5	53.61	29.8	94.96
2.0	73.50	40.8	168.46	2.0	73.50	40.8	168.46
2.5	102.97	57.2	271.43	2.5	102.97	57.2	271.43
3.0	151.48	84.2	422.91	3.0	151.48	84.2	422.91
3.5	224.04	124.5	646.94	3.5	231.57	128.7	654.48
4.0	321.97	178.9	968.92	4.0	339.29	188.5	993.77
4.5	482.29	267.9	1451.21	4.5	506.96	281.6	1500.73
5.0	612.21	340.1	2063.41	5.0	639.07	355.0	2139.79
5.5	568.99	316.1	2632.41	5.5	600.18	333.4	2739.97
6.0	504.45	280.3	3136.86	6.0	554.81	308.2	3294.78
6.5	396.90	220.5	3533.76	6.5	480.65	267.0	3775.43
7.0	273.63	152.0	3807.38	7.0	395.32	219.6	4170.74
7.5	124.72	69.3	3932.10	7.5	305.89	169.9	4476.63
8.0	0.00	0.0	3932.10	8.0	206.01	114.4	4682.64
				8.5	93.90	52.2	4776.54
				9.0	0.00	0.0	4776.54

CHECIPITACIONES MARIMAS (N. 24 HUHAS, ANUALLS (MA)

Numero de		x i				
Orden	x i	erdenados	frequencies	1 (eños)	fixi	X (#A)
1 .	47.4	6.2	0,014		0.091	1.5
	64.3	17.4	0.042		0,010	10,6
i	72.3	19.2	U U69		บ`บ≀บ	14,3
í	94.0	23, 1	0 097		0.040	18,7
	67.5	25, 3	Ü, 125		0,100	25,3
2 3 4 5 6 7 8	97.5 42.7	26.0	0.153		0,200	34,4
ì	83.6	28,4	U. 181		U , (HI)	60,4
Á	60,3	33.2	U, 298		U. 4(H)	47,1
ğ	72,0	35.1	U, 236	₹	ひこういい	23,4
10	6 2	40,2	(1), 164		0,500	.0
11	25,3	40. \$	U 7 .		1) ((0)	68,4
12	90,6	40, 1	U, 319	>	11, 81313	77.0
13	46,2	40, 3	0,347		11,854	85,2
14	40.3	42.7	0,375	10	n' son	?6.0
15	62.6	46.2	0,403	20	$0, \mathbf{z}, 0$	112,2
16	28.4	47.4	0.431		0,70	117,4
17	78.3	47.5	0.453	ンロ	0,780	135.3
18	68.2	57.2	41 62A	1110	0.770	149,0 185,5
19	71.6	62.6	0,514	いいひ	U. 978	185,5
20	101.4	65.8	(),542 U,567	1000	(0, 777	201,2
žĭ	75.1	63.4	U, 567			
55	40.2	64.3	U. 17			
23	62.8	68.2	U. 1			
24	19.2	71,6	11,633			
25	33.2	72.3	ti 681			
26	35, 1	72,8	11, 71:8			
27	41.5	75,1	U.736			
28	84.6	78.5	11 64			
ŽÝ	40.3	83.6	0,793			
30	23, 1	84.6	0.319			
ši	57.2	90.0	() B . 7			
35	90.0	90.6	0.875			
33	63,4	97.5 101.4	0,593			
34	144,5	97.5	0,431			
35	26,0	101.4	U 9			
36	17,4	144,5	Ü, FA6			

Prumba de Chi-cuodrado (Intervato de cuntienza del 45 %): El ajuste es aceptable

ISLA DE GRAN CANARLA ESTACION POR 162 CUNTADURES

PRECEDETACEUMES MAXEMAS EN 24 HURAS, ANUALES (mm)

LET DE DISTRIBUCION DE COMDEL

		*********	• • • • • • • • • •	• • • • • •		
Numero de Orden	x i	x I ordenedos	Frequencies	l(años)	((X)	X (mm)
		14,4	0,017		1 טט, ט	-1,4
1	22.3	14,8	0,002		0,010	5,4
•	50.3	17.3	U, U.85		บันรบ	Ψ, υ
	78,3	16.7	u, 121		0,040	12,7
. 4	. 8,0	17,8	U, 155		ט, זוונ	10,1
5	60.0	30.0	U, 17U		0,200	(5,9
•	36,2	21.5	0,170		D 200	31.4
7	28,0	22.3	0.224		11, 6110	16.6
8	57,5	25.5	0,259	2	U, 5(III)	41.9
9	21,5	20,0	0,273	•	0, 6111	47.8
10	100,0	32.0	0,328		U, 700	54.6
11	84,0	33,4	n. 195		0, 110	63.5
12	71,0	33,4	0,377	5	(1, 81)11	23.7
13	¥8,5	34.7	0, 431	4	0,850	57.6
14	63.5"	36.2	11,465	10	0,700	11.6
15	44.5 33.8	66,0	ליניל, ט	20	11, 4511	71.6
16	33.8	44.5	ひょうまな	• 5	0,760	9.5.9
17	16,7	46.0	0,567	20	0,480	107,3
18	33,4	50, 2	0,693	1011)	11 770	122,6
19	14.4	52.5	U. 4.13	500	0.778	155.4
	32,0	50, ú	0.572	10170	0,999	166.5
50	35.0	Śã, ŭ	0,101			
<u> </u>	73,3 34,7	60.0	0.741			
23 23	30.0	63.3	U. 116			
Ω	50,0	71.0	0,210			
24 25	46.0	73.3	บ ะ 5			
35	25,5	· · · · · · · · · · · · · · · · · · ·	(1,8/9			
27	58,0	78.3 84.0	0.214			
27	44.0	84.5	0.948			
28 29	14.8	98,5 100,0	Ŭ V 8 3			
4 7	, -		•			

Prueba de Chi-cuadradu (Intervato de conflanzo del VV I): El ajuste es aceptable

PRECIPITACIONES MAXIMAS EN 24 HUDAS, ANUALES (MA)

LET DE DISTRIBUCION DE CONDEL

				• • • • •		
Numere de Orden	x i	x i ordenedos	Frecuencias	1 (eños)	1 (X)	X (mm)
	•••••					
1	19.5	7,4	0,015		0.1721	-5,7 1,8
2	39.3	9.6	0.046		บับเบ	
3	70,0	12,4	0,074		0.070	
4	70,3	15,1	0, 103		0.040	
5	90,1	15.9	U, 132		U. 117Ü	14.5
5	33.7	19,5 20,3	U, 162		(1, 2(11)	21.1
7	9.4	20,3	U, 191		u 300	26.4
÷	9, 6 26, 1	20,8	0,221	_	0,400	\$1.5
	42.1	25,0	U, COU	2	u Sini	36.6
10	25.5	25,5	0,279	-	0,600 0,700	42.2
11	30.3 54.6	25,4	0, 397		U (BIN)	48.8
12	54.6	26.1 28.2	0, 338	5	(1, 61.03	57.4 65.2
13	10,4	28.2	U, \$53		11 7: 11	33.5
14	102.8	30.3	0.377	10	0,500	71.2
15	93,3	30.3	0,4.6		0,770	84.4 88.6
16	49.1	30.4	0.454	?5	11, 960	1111 4
17	83.7	33,7	0,44	50	U, VEU	101,6
18	50.2	34,7	0,515	100	11,570	114,4
19	34.7	37.3	0.544	SUU	U, YY8	144, 1
20	25.6	39.3	0.574	1000	0,777	150,8
21	7.4	39.5	U, 6115			
. 55	30,4	42.1	0,632			
23	28.2	4 A 3	0,662			
34	65.0	49, 1	0.671			
25 26 27	48.3	50.2	0.721			
34	12 (51.6	11 750			
27	13.9	54.4	U.777			
28	32.5	61.3	(1 6.7)			
ŽÝ	žu, š	70,0	11, 878			
Ìó	51,6	70.3	(1,868			
31	73,2	75,2	U. £77			
32	15, 1	83.7	0.726			
. 33	žú, i	90.1	0, 7,8			
34	29,6	102,8	0,985			
•	2.,.		=			

Pruebo de Chi-cuadrado (intervato de conflanza del VS I): El ajuste es aceptable

ISLA DE GRAN CANARLA ESTACLUM MUN. 150 SURTA - HIESA

PRECIPITACIONES MAXIMAS EN 24 HURAS, ANUALES (AM)

LET DE DISTRIBUCION DE COMUEL

				•		
Numero de Orden	XI.	Xi ordenedos	Frecuencies	1 (años)	Fixi	X (mm)
1 23 4 5 6 7 8 9 0 11 123 145 117 221 223 222 223 33 33 33 33 33 33 33 33 33	4782,722,28379 U5525252525252712452525252525555555555555	8,322718252331,3327182327279,3333334,45,3279,87,32707,45,327782,3334,45,327782,327782,407,73374,1707,5	U_U14 U_U47 U_U57 U_U57 U_U55 U_U55 U_U55 U_U55 U_U56 U_U547 U_U547 U_U547 U_U547 U_U567 U_U5	2 5 10 20 25 50 1110 500 1000	U, (971 O, 1071) U, 120 U, 1071 U, 200 U, 400 U, 400 U, 500 U, 500 U, 500 U, 500 U, 500 U, 500 U, 700 U, 900 U, 90	-2.6 71.5 11.5 12.5 12.5 12.5 12.5 12.5 12.5 1

Prueba de Chi-cuediado (Intervato de cunitanza del 45 %): El ajuste ex acapiabla

PHECIPITACIONES MAXIMAS EN 26 HUDAS, ANUALES CAME

TEL DE DISIGIONATION DE COMPET

Numere de Orden	x t	x I ordenedos	frequencies	1 (años)	+ 1 X J	X (mm)
	35, 1	16,1	0,01\$		ו ניט, ט	-0,1
•	91.3	25.4	0,11,4		0,010	6,8
i	123,2	27,5	Ü_C8?		0.070	12,0
,	57.4	31,6	Ū, 125		U COU	18.3
3	103.1	34.2	Ü. 161		ย 100	50.0
í	76.5	35, 1	(1) 175		0,200	40,5
ž	38.2	35.4	0,232		U. Jini	44.7
	47.4	30,2	U, 268		U, CIRI	58,5
	71,4	₹3,3	0, 596	2	O'ZIN1	67.4
10	78.4	45.3	11, 339		[1,606]	71,2
11	180,0	52,6	0.375		U . /1H)	E5.7
12	150,0	57,8	0,411	>	טייט, ט	103,7
13	58,6	58, 6	0,445		U. t. U	113,8
	52.8	67.2	0.493	10	0,700	12/.7
14	12.0	71,4	0,518	20	U . V . II	150,7
15	16.1	76.5	Ŭ.:54	25	ו ט	158,0
16 17	34.2	78.4	0 589	รับ	ני יַט	180,5
	25.6	60,3	0,65	100	11, 770	200,8
1.8	80.3	87.4	Ü, 461	500	U, 1.6	254.5
19	145, 8	91.7	(1, 6 / 6	1000	0,744	276,7
20	89.4	87.4	0.733		•••	
21	29.3	91.5	(1, 768			
2.5	110.4	103, 1	11, 100			
53	31.6	110,4	U. 894			
24	69.2	114,2	0.837			
25	114.2	123,2	0.875			
20	45, 8	145,8	0,711			
21	35.4	150,0	0.746			
28	45,3	180,0	U.982			

Prueba de Chi-cuedrado ilniervalo de conflanza del 95 %): El ajuste es eceptable

ISLA DE GIAN CANARIA ESTACION INM 155 SAN JUSE DE ANGUINEGUIN

PRECEPTIACTURES MAXIMAS ER 26 HUHAS, ARVALES CHAI

LET DE DISTRIBULTUR DE GUNDEL

Drden Orden	x i	x1 erdenedas	Frequencias	1(eños)	f (X)	X (mm)
	15.0	3,8	0,014		0,091	-16,4
1	15,0	2.0	0,043		0.010	-8.4
3	21.5	Š'Ă	0,071		0.0.0	3 .c-
?	37,8	j· š	Ü. 100		0,060	
3	110.1	1:1	0,129		D, 100	4.0
	66 U 119 1 45 8 22 7	4.0 5.8 7.5 7.7	U, 157		0, 200	10.6
7	22' 7	11,0	U 186		U, SUU	16.0
	18.0	12.2	0 216		0,400	21,1
į	13,4	12.2 13.4	U 243	5	CI, SINI	26.2
10	ii.ų	14.1	0,371		U, 6010	31.9 38.5 47.2
iĭ	24.7	14, 1 15, U 18, U 18, 2 19, 4 21, 5 22, 7 23, 7 24, 7 25, U	0.300		U, (III)	33.3
iż	33,0	18.0	0.337	>	ii, bini	
iì	12,2	18.2	0 5.7		U, 8. U	23.1
14	16.1	19.4	11.276	10	(), YEIU	61,1
13	14, 1 18, 2	21.5	13 4 14	20	U, Y, II	79.7
16	7.7	\$5,5	12 6 4 3	23	0.760	(3.7
iž	58,6	22.7	0,471) Uc	0, 4811	V1.7
18	61,2	23,5	0,500	11/17	0,990	104.7
iř	12.4	24.7	0.534	1,400	0.778	147.4
30	8U. 2.	25.0	0.557	1000	0.444	147,4
žĭ	35.3	27,1	U,596			
ŞŞ	48.0	31.0	0.614			
રેડે	31,0	32,4 35,0	0.543			
24	3.8	35.0	0,671			
รัร	12.0	35,3	u iuu			
26	6 0	37,4	0.777			
27	19 4	37.8	$\mathbf{u}, t_{>}t$			
28	23.5	41.8	07.106			
ž٩٠	37,4	45.8	0,814			
30	23.5 37.4 5.8	48.0	0.0.3			
31	22.2	48.0 59.6	u, 8 - 1			
32	1,5	61.2 64.0	0,700			
33	27.1	64.0	0.8.3			
34	41.8	8O. Z	0.457			
35	10,0	119,1	Ü, 486			

Pruebo de Chi-cuadrado (Intervato de conflanzo del 95 %): El ajuste es acaptable

PRECIPITACIONES MAXIMAS EN 24 HURAS, ANNALES LAMP

LET DE DISTRIBUCION DE CUMBEL

Numera de Orden	x i	x i ordenedos	Frequencies	l(años)	F(X)	X (nm)			
1	19,3	9,3	0,016		0.001	3.5			
2	84.4	19,2	0,047		0,010	13,5			
š	7 A 7	19,3	0.078		0.020	17.6			
23 45 67 8	97.8	24.0	0,107		0.040	22,4			
5	140.6	28.3	0,141		0.100	30,8			
4	48.3	30.0	(1, 175		0.500	37.6			
7	69.3	35.6	0,493		U SUU	46.9			
8	20,3	40.4	0.234	_	0.400	51.6			
	68.3	46.3	0.200	2	0,500	60.6			
10	9,3	50,4	0.591		0.600	68.1			
11	20,0	51,8	0,328	-	0,700	77,1 88,7			
12	96,3	31.5	0,357 0,371	5	0,800	00.7			
13	67.2	55.3	0,371		0,850	95,6			
14	76.3	50.3	0,455	10	U YUU	107.4			
15	53.5	58.6	0.433	ξÜ	0.9.0	125.2			
1.6	19.2	67.2	0,484	25	0.460	1:0.9			
17	107,2	68.3	0,514	50	0.480	148.4			
18	90.5	69.3	0.547	100	0.970	165,7			
19	85,3	70,1	0,578	SUU	0.918				
50	90.2	76.3	(1),6(1)	1000	0,000	553.0			
51	76.4	76.3	U / .1						
5.5	76.3	78.4	0.6.5						
23	56.3	78.7	0,793						
24	26.0	84.4	0,734						
25	40,6	80.3	0. (65						
54	15,6	90.2	0,777						
2.7	50.4	90.5	U, E. 8						
5.6	143,2	95.3	0,857						
2.9	54.3	97.8	0.871						
30	51,8	109.2	0,922						
31	70, 1	140,6	0,853						
32	3u, o	143,2	0,484						

Pruebo de Chi-cuodradu (Intervatu de confianzo del 95 %): El ajuste es oceptable

ISLA DE GRAN CANARIA ESTACIUN NUM. 127 NAMERITAS - VIVERU

PRECIPITACIONES MAXIMAS EN 24 HUNAS, ANUALES IMMI

TEA ME DISTUIRNOTION DE COMPET

Numera Orden	x i	X1 ordenados	Frecuencias	lieños)	FIX	X (mm)		
1	35,6	25,5	0.016		ひっぴりり	8,4		
	11.3	26,5	0,041		0,010	17,8		
2 3 5 6 7 8	95.4	32,0	0,068		0,020	21.6		
į	83.4	34.2	0,075		0 040	26, 1		
Š	66.4	35.3	U, 122		U, 11HI	33.9		
ă	20.5	35.6	U, 149		U, ZUU	42.3		
Ž	55.4	36.9	U. 176		0,300	49,0 55,4		
à	65.2	40.0	0, 293	_	D, ALRI	33,6		
ý	178.3	44,2	0, 239	2	U, SHU	61.9		
10	35.3	45.6	7چ ن	-	(), 61H)	67.0		
11	45,4	51.0 51.2	U94		U, 700	77.4 88.3		
12	87.4	51,7	0,311	5	U, 800	00.3		
13	31.6	51,6	U, 3:8		U, 850 U, 900	45,7 105, 8		
14	11.7	51, è 53, 8 55, 4	0,365	10	0,450	122.5		
15	73.5	55.4	0.172	20	0,400	127, 6		
16	25,5	61.3 61.4	(1, 619	25 UC	U. YEU	144.2		
17	78,5	61.6	0.446	1(I)	0.270	160,5		
18	66,8	84.0	0.4/3	500	11, 7 . 8	178.0		
19	86,4	64,U 64,U • 65,2	0.527	1000	บำวงจ	214.2		
20	61,4	• 65.2	0.327	1000	0,	,-		
21	82.1	88.4	0,541					
55	51,3	66,8 67,3 73,5 77,3	U 628					
53	53,8	31,5	U, e 35					
34	83.4	55.1	0.462					
25	34,2	11:1	0,697					
56	44,2	78,5	0,714					
31	61,3	62.1	11 74 1					
28 29	124,7	41.4	11 771					
	32.U 89.3	83.4	0.777					
30	85.0	85;Ū	U. 8. 1					
31 32	84.0	86.4	(1,8)					
33	60	87 4	U #78					
34	112,0	75.4 119.0	0,432 0,432					
35	40.0	119 0	U. V 12			•		
36	36.9	124.7	11,737					
37	31.0	178,3	0.786					

Prucha de Chi-cuadrodo (Intervalu de confianza del 45 %): El ajuste es acaptable ISLA UE GHAN CANARIA ESTACION NON 122 PALUMAS

PRECIPITACIONES MAXIMAS EN 24 HUHAS, ANNALES (MA)

LET DE DISTRIBUCION DE COMME

Numere de Orden	x i	x i or denedos	Frequencies	Ttañosi	f (x)	X (em)	
1234567891011231456789011231233333333333333333333333333333333	27,00 60,55 60,55 72,43 10,52 10,52 10,52 10,52 10,52 10,53	ordenedos 10,00 177,60 18,337,80 223,80 2	0,000 0,000 0,000 0,172 0,172 0,172 0,172 0,232 0,231	2 - 5 10 20 25 50 100 500 1000	E (x)	1 (em) -2, 9 4, 0 6, 7 10, 7 26, 6 31, 9 41, 11 67, 7 83, 6 95, 53 107, 5 146, 2	
31 31 32	40,6 18,5 32,6	58.1 58.5 62.5	0,777 0,777 0,824				

Prueto de Chi-cuadrado (Intervato de confianza del 95 %); El ajuste es aceptable

ISLA DE GHAN CANARIA ESTACIUN MUN. 123 CANALIZU, EL

PRECIPITACIUMES MAXIMAS EM 26 MUNAS, AMUALES (mm)

LET DE DISTRIBUCION DE COMBEC

Numero de Orden	хŧ	X I ordenados	Frequencies	1 (años)	F(X)	X (mm)	
1	38,1	25,3	0,014		0,001	5.2	
2	89.1	28.2	0.414.1		บับบับ	16, 1	
23 45 67 8	98 4	30,1	0,068		0,070	20.5	
4	125.0 158.0	32,1	0.095		0.040	25.7	
5	158,0	35, 1	0,122		0,100	36.7	
•	32,1	36.8	0,149		0,200	44,3	
7	76.5	38,1	U, 176		0,300	52,1	
	71.2	38,2	0.703	_	0,400	59.5	
Ÿ	155,1	38,5	0.230	5	U, 500	67,0	
10	25.3	٤٠, ٢	0,257	••	U , 6(H)	75.2	
11	61.3	45.6	0,294		0,700	84.8	
12	110.1	46,0	0,311	3	11,800	97.5	
13	65.1 82.3	26,2	U. 3:8		ひしもいり	106.0	
14	82.3	55.7	0,365	10	ניטץ ט	117,6	
15	45.0	37,1	0,352	20	0,950	137,0	
16	35,1	61.3	11.617		0, 9611	143,1	
17	100.7	63, 1	0.446	50	U, Vitil	162.0	
1.6	120.6	65,0	0.673	1(10)	0,970	180,8	
19	98,5	45, 1	0,500	200	U. 778	224.2	
20	100,3	68,2	ひっちょと	1010	(1, 474	242,8	
21	112,0	71,2	11,554				
5.5	55.7	74.6	0,541				
23	45.4	80,9	U, 61/8				
24	30.1	82,3	(1,635				
25	74.6	82,5	0.562				
24	20.2	87,1	0,687				
21	59.1	96,5	0,716				
28	103,2	98,4	0.743				
5.6	38.2	100,3	0.770				
30	38.3	100.7	U, 777				
31	8U.9 63,1	162,5	U. 824				
32	63.1	110,1	0.631				
33	24.2	112.0	U. 8 · A				
34	#2.5 40.2	120,6	(1) 9113				
35	40, 2	125,0	0,732				
36	36,8	123.1	0.957				
37	46.8	158,8	0,486				

Prueba de Chi-cuadrado (Intervato de confianza del 95 %): El sjuste es elepteble

PRECIPITACIONES MAXIMAS EN 26 MONAS, ANDALES (MA)

Numera						
de Orden		x t				
	X f	ordenedos	Frecuencies	(tenos)	f (x)	X tem)
1	49.1	12.6	0,014		4. 40.4	49 4
2	90.5	20.0	0 041		0,091 0,010	-13.0
3	106.0	ŽŮ, Ý	U, U & 8		0.010	3,8
4	120.0	30, 1	0.075		0.040	10,5
5	233,4	30,5	U, 172		U, TOU	18.6
6	\$0,0	32.3	0.149		0, 200	32.4
2 3 5 6 7	80,0	35.U	U, 176		U, Sini	50 3
•	115,2	40.0	0,193		11, 41#1	59.2 70.5
	83 Ü	())	0.239	2	0.500	87.0
10	33.0	49.1	0,2,7		U. bini	24.6
11	94,0	50.3	0)184		tr, hou	109.5
12	174.5	57,8	0.311	5	U, 8t41	1.8.8
13	100.0	62,3	0.378		U. 8141	1/.1 2
14	180,0	68.5	0.365	10	U, 7131	159.8
15	96,5	62,3 68.5 72.1 78.0	0,372	:0	0.7.0	
16 17	45.5	74.0	0,419	35	11, 4 (1)	177.0
	135.6	4U.U	0,44 5 0,47 3	70	U, YBU	2.8.1
18	186,0	85,0	0.473	100	(1,779	256, 9
19	100.0	973.5	ניניל, ט	500	U. 478	323.6
50	156,0	91,2	0,527	1000	U 999	352.3
21	180.0	91 2 94 0 95 4	U			•
55	72.1	95.4	0) SA1			
23	50.3	96.5	U, 698			
24	12.6	100.0	0,44,0			
25	30, 1	100.0	U. ee?			
26 27	20.9	102,1	11.687			
28	78,0	106,0	U, 715			
29	131.6	115,2	0,743			
30	91,2	120,0	u, i i u			
	30,5	131,6	0.137			
31	102,1	135,6	U. 8.%			
35	35.3	150.U	0,671			
33	68.3	176,5	U, 6 - 8			
34	95.4	180,0	ر (۷۰ تا			
35	6	187,0	U, V32			
36	6(1 (1	186.0	11,303			
37	57.8	233,4	U, 786			

Prueba de Chi-cuadrado tintervato de contienze del 95 %); El ajuste es aceptable

ISLA UE GRAN CANARIA ESTACIUN NUM. UB6 - ELIKAUUS DE AHANA

PRECIPITACIONES MAXIMAS EN 24 HUNAS, ANUALES (ma) LET DE DISTRIBUCION DE GOMBEL

Numero		********	**********	*****		
de		x t				
Orden	X i	ordenedos	frecuencies	Itenos)	+ (x)	X (mm)
1	31.6	12.5	0,014	*******	U.1771	-3,4
•	83.9	15.0	0.041		0.010	7.8
í	107,3	20.0 31.5	0,06 8 0,09 5		0.0.0	12.6
Ś	166.5	31.6	0,122		U, U/.() U, 1U()	17. H
2 3 4 5 6 7 8	144.5	33.0	U 149		U, 2(II)	27.0
7	81,4	33.0 33.5	U 176		Ü, 300	36, 9 45, 0
	52.1	34.0 37.5	0,203		0,4111	52.5
	112,7	37,5	บ. สวย	2	U, SIRI	6Ü, Ş
10 11 12 13	12,5 57,3 110,5 57,3 60,5 64,2	39,2 43,0 47,0 47,0	0,257		U, 600	68,7
- ;;	37.3	53.0	0.284	_	0,7100	78.6
- 11	1,10,3	67.0	0,311	5	(), 8(4)	91.6
14	40.5	50.0	0.338		U, 8. U	190, 3
13	46.3	50.8	U. 365 U. 372	10	0,900	112,3
16	39'3	50.5 52.1 52.1	0.372	53 50	0,950	132.2
17	39, 2 152, 0	53° ĭ	0.446	20	U 960	135,6
18	80,0	56.5	0,673	100	0. 970	158.U 177.5
19	63 ()	56.5 57.3	บังบัง	500	U 7.E	272.0
50	148.0	37.3	0.527	1000	0, 454	241,1
31	71,5	60 5	ひしょう		••	
55	50,0	64,2 67,5 71,5 78,5	0,541			
53	52,0 15,0 37,5	67.5	U, 6UB			
24	13.0	71.5	0,633			
25	3/.3	(8.3	U. 662			
5 t	. 49.8	87. Ó	U, 6#7			
Žė	20.0 67.3 101.5	81.4	0,714			
29	้รับ รี	87.0	ij <i>;;</i> ;;			
30	50.5 34.0	95.3	0,727			
31	78.5	101 5	0,824			
32	36.5	107.5	0,851			
33	67.U	110.5	O A/A			
34	87.0	112.7	0,395			
35	33.0	144.5	U, v Je			
36	31.3	148.U	11,357			
37	47.0	152,0	U. 486			

Pruebe de Chi-tuedradu (intervato de confienze det 95 %): El éjuste es eceptable ISLA DE GRAN CANARIA ESTACIUN NUM DIU PAJUNALES - PINAR

PRECIPITACIONES MAXIMAS EN 24 MORAS, ANNALES (AM)

Numero de Orden	x t	X i ordenados	frecuencias	T(shos)	f (x)	X (mm)
1	40,5	12,1	0.014		0.091	1,4
2	111,0	32, 1	0.042		ข้.บาบ	13,0
3	153,8	32,4	0.067		0.020	177
4	120,5	34.5	0,077		0.040	23,3
5	100.0	35, 1	0,125		0.100	32.9
3 4 5 6 7	14.5 65.5	35, 1 37, 2 37, 6	0,153		0.200	23,3 32,9 43,2
7	45,5	37.6	0,181		0.300	51.5
8	54.3	30.2	0,208		0.400	57.4
	135, 2	39.5	0.236	2	0.500	77.1
10	45.8	40.5	11,264		0 600	74,1
11	78,0	45,6	0,272		0,700	86.4
12	116.2	54.3	0,319	5	O, BOO	94.9
13	56,2	54.2	0.3		0.859	107.0
16	68,5	56,5	0.37	10	U YUU	121,4
15	69.2 37.2 73.9 75.2	60.0	0 603	20	0 970	147.1
16	37.2	61.0 62.5	0.431	25	U. 76U	148,6
17	73.9	63.5	0,455	50	0.780	168.8
18	75,2	65.5	0.486	100	0.970	188,8
19	86,0	66.0	0,514	560	0.778	235,1
50	115,4	88 5	0.542	1000	0.299	255.0
21	56,5	67,2 73,9 75,2	U '.A7			
2.5	79,0	73.9	0.527			
23	12.1	75.2	0,625			
24	32.1	78.0	() / · · · ;			
25	35.1	79 U	11 681			
24	62.5	87.0 95.4	0.74.8			
21	159.1	95.6	11 4 3 6			
28	# Y (I	100.0	(1, 7,64			
54	32.0	111.0	0,772			
30	٧٠, ٩	115,4	(1, 2, 19			
31	37,6	116.2	U.817			
35	61.0	120.5	0.775			
33	136,0	135.2	0.541			
34	39,5	136,0	0,731			
35	38,2	153,8	U, 5 3			
36	60,0	139, 1	0.986			
		•	•			

Prueba de Chi-cuadrado tintervato de conffanza det 95 %): El ajusto es aceptable

ISLA DE GRAN CANARIA ESTACION NUM. U13 MAJADA ALTA

PRECIPITACIONES MAXIMAS EN 24 HURAS, ANJUALES (mm) LET DE DISTRIBUCIUM DE GUMBEL

Numero de Orden	хŧ	x i ordenados	Frecuencies	1(años)	F(X)	X (mm)	
1	39,2	26,0	0,014		0.091	1,3	
	72,6	26,6	0,041		0.010	12.5	
i	115,0	27.3	0.068		0.020	17,0	
č	106,3	28,2	0,075		0,040	22.4	
Ś	126,5	29.5	0.122		0,100	31.7	
2 3 4 5 6 7 8	29.5	33,2	0,149		ti' štin	61,6	
7	63,5	14 1	0,176		U, 300	49.6	
8	70.3	35,0	0, 293	_	0,4110	57,2	
	170.0	39.2	0,739	2	טוול ט	64.9	
10	28,2	35.0 39.2 41.5 45.0	0, 293 0, 239 0, 237		(1, 5111)	73.3 85.7	
11	34,1	45.0		5	U, 7(H)	36.2	
12	86.0	46.5	0,311 0,328	,	U, 8:-1)	195,0	
13	46,5 75,0	48.5	U. 365	10	11 2181	117.0	
14	(5,0	54.1	0.372	รับ		136.9	
15 16	75,5	54.4 60.4	0,417	25	11 CAI1	143, 2	
17	26.0 140.5	61,0	0.446	50	[1 5 [1]	162,6	
18		63.3	0,473	100	(1,970	181,9	
19	93.0. 60,4	65,2	บ รบว	SUU	ti 978	276.5	
20	86.0	86.7	0,557	1(1(10	(1, 999	245.7	
ŽĬ	83,0	70.3	٠٠٠ ال		•	•	
ŞŞ	41.0	72.6	0,561				
23	61.0 45.0	75.0	0.648				
24	41.5	75.5 83.0	0.635				
25	41.5 33.0	83.0	0,662				
26	34,1	86.0	U, 697 U, 716				
21	91,3	86.0	0.10				
59	90,	90.8	0.743 0.770				
59	54.4	91.5	0,777				
30	27.3	93.0	0.824				
31	66.7	106,3 115,0	0,851				
33 35	121,4	121,4	U 8 8				
34	124 5	126.5	0,505				
35	126,5 33,2	126.5	11 5.5				
36	26,6	160.5	0.959				
37	46.5	170.0	U, 786				
,,	-0,7	,.					

Prueba de Chi-cuadrado (Intervato de confianza del 95 %): El ajuste es acaptable

RELACION DE ESTACIONES PLUVIOMETRICAS.

Cuenca: Bco. Arguineguín.

NUM.	NOMBRE	X	Y	Z
010	Pajonales - Pinar	435.315	3.091.800	1195
013	Majada Alta	434.240	3.088.500	900
046	Ayacata	440.250	3.092.367	1305
086	Cercados de Araña	438.670	3.087.900	925
122	Palomas	437.310	3.079.390	537
123	Canalizo, El	437.735	3.088.210	980
126	Bailadero - Vivero	441.525	3.086.600	1040
127	Nameritas - Vivero	433.470	3.089.755	1005
144	Cruz del Carpio	438.250	3.093.090	1365
155	San José de Arguineguín	434.400	3.073.040	35
157	Cercados Espino	435.030	3.080.930	200
159	Soria - Presa	434.310	3.086.865	650
160	Barranquillo Andrés	433.200	3.085.720	650
162	Cortadores	433.330	3.082.480	740

CUENCA: BCO. ARGUINEGUIN.

- Superficie (Km.²): 94,08

- Longitud del Cauce Principal (Km.): 28,3

- Desnivel (m.): 1.600

- TC (isocronas): 5 h.

- TC (Giandotti): 3,6 h.

- Velocidades:

5	Km/h. desde	0	hasta	200 m.
6	Km/h. desde	200	hasta	950 m.
7	Km/h. desde	950	hasta	1.600 m.

- Coeficientes de escorrentía:

0.73	desde isocrona	0 h.	hasta isocrona	1 h.
0.85	desde isocrona	1 h.	hasta isocrona	4,5 h
	desde isocrona			

medio: 0,85

- Precipitación en % de la precipitación de 24 h..

11000		_	•	4	=	6	Я
Duración del temporal (h.)	1	2	3	4	3	U	•
Duracion der verif	38	47	61	74	81	85	91
η_o	30	47	OI.	• •			

- Datos del cauce:

Ancho base (m):35
Angulo talud: 1,3°
Pendiente: 0,87

***	Instituto Tecnológico GeoMinero de España
~ \	AREA DE LABORATORIOS Y TECNICAS BASICAS

SONDEO GALERAS

	<u> </u>
TIPO DE ENSAYO RECUPERACION	N. Emrs
TIPO DE ENSAYO RECUPERACION Tabla de medidas en SONDEO DE BOMBEO	COTA 183 mts ()
Distancia al pozo de bombeomts	Q
Distancia al pozo de bombeomts Técnico responsableSANTIAGO ADANEZ	FECHA 20-03-92
18CINCO 183bourgerrammarame	L

Fecha	Hora	Tiempo (min)	Prot del agua (mis.)	Descenso d (mts.)	Q (1/s)	1 + 1' 1' (min)	dR	Observaciones
20-03-92	2,00	120	77,585	9,695		25	6,045	
	2,30	150	77,40	9,88		20,2	5,86	
	3,00	180	77,24	10,04		17	5,7	
	3,30	200	77,08	10,2		14,7	5,54	
	4,00	240	76,955	10,325		13	5,415	
	4,30	270		10,465		11,7	5,275	
	5,00	300	76,71	10,57		10,6	5,17	
	5,30	330	76,605	10,675		9,7	5,065	
	6,00	360		10,785		9	4,955	
	6,30	390	76,40	10,88		8,4	4,86	,
	7,00	420	76,30	10,98		7,9	4,76	
	7,30	450		11,065		7,4	4,675	
	8,00	480		11,14		7	4,6	
	8,30	510	76,06	11,22		6,6	4,52	
	9,00	540	75,99	11,29		6,3	4,45	
	9,30	570	75,90	11,38		6,05	4,36	
	10,00	600	75,83	11,45		5,8	4,29	
21-03-92		720	75,565			5	4,025	5
	1,30		75,38	11,9		4,55	3,84	
	2,00	840	75,33	11,95		4,4	3,79	
	9,20		74,62	12,66		3,25	3,08	
	12,04		74,39	12,86		3	2,85	
<u></u>	1							
			-					
			-		1			
	 							
	-							
	-						.	
	-							

***	Instituto Tecnológico GeoMinero de España
	AREA DE LABORATORIOS Y TECNICAS BAS

SONDEO GOTERAS

TIPO DE ENSAYO RECUPERACION	N. E mts
Tabla de medidas enSONDEO DE BOMBEOmts	COTA183mrs ()
Distancia al pozo de bombeomts	Q
Técnico responsableSANTIAGO_ADANEZ	FECHA20-03-92

Fecha	Hora	Tiempo (min)	Prot del agua (mts.)	Descenso d (mts.)	(1/1)	1 + 1' (m:n)	dR		Observaciones
0-03-92	12,00	0	87,28				15,74		
		1/2	79,22	8,06		5761	7,68		
		1	78,97	8,31		2881	7,43		
		1 ½	78,92	8,36		1921	7,38		
		2	78,87	8,41		1441	7,33		
		3	78,835	8,445		961	7,295		
		4	78,78	8,5		721	7,24		
		5	78,74	8,54		577	7,2		
		6	78,71	8,57		481	7,17		
		7	78,70	8,58		412,4	7,16	.	
		8	78,67	8,61		361	7,13		
		9	78,65	8,63		321	7,11		
		10	78,61	8,67		289	7,07		
		12	78,595	8,685		241	7,055		
		14	78,57	8,71		206,7	7,03		
		17	78,52	8,76		170,4	6,98		
		18	78,50	8,78		161	6,96		
		20	78,49	8,79		145	6,95		
		25	78,43	8,85		116,2	6,89		
		30	78,375	8,905		97	6,835		
		35	78,33	8,95		83,3	6,79		
		40	78,27	9,01		73	6,73		
		45	78,205	9,075		65	6,665		
		50	78,16	9,12		58,6	6,56		
	1,00	60	78,06	9,22		49	6,52		
	1,10	70	77,95	9,33		42,1	6,41		
	1,20	80	77,88	9,40		37	6,34		
	1,30	90	77,80	9,48		33	6,26		
	1,40	100	77,73	9,55		29,8	6.19		
ļ	1,41	110	77,65	9,63		26.9	6,11		

POZO GOTERAS

TIPO DE ENSAYO A CAUDAL CONSTANTE (48 h)	N. E 72, 105
Tabla de medidas en PIEZOMETRO POZO GOTERAS	COTA
Tabla de medidas en PIEZOMETRO POZO GOTERAS Distancia al pozo de bombeo 9,2 m (CENTRO DEL POZO)mts	Q22,19 1/s
Técnico responsable_SANTIAGO ADANEZ	FECHA 18-03-92

	7	7	7						
Fecha	Hora	Tiempo (min)	Prot del agua (mts.)	Descenso d (mts.)	(1/1)	1 + 1' (min)			Observaciones
18-03-92	2,20	140	72,195	0,09			†		
	2,30	150	72,205	0,1			 		
	2,40	160	72,22	0,115					
	2,50	170	·						
	3,00	180	72,245	0,14					
	3,30	210	72,28	0,175					
	4,00	240	72,325	0,22					
	4,30	270	72,365	0,26					
	5,00	300	72,41	0,305					
	5,30	330	72,455	0,35					
	6,00	360	72,50	0,395					
	6,30	390	72,545	0,44					
	7,00	420							
	7,30	450	72,626	0,52					
	8,00	480	72,685	0,58				·	
	8,30	510	72,73	0,625					
	9,00	540	72,776	0,67					
	9,30	570	72,82	0,715					
	10,30	630	72,915	0,81					
	11,00	660	72,96	0,855					·
19-03-92	12,00	720	73,05	0,945					
	1,00	780	73,13	1,025					
	2,00	840	73,22	1,115					
	8,34	1236	74,22*	Achicado	el po	20			* 73,95 Fondo lodosc
								1	

POZO GOTERAS

N. E 72, 105 mts
COTA 185
Q_22,19 1/s
FECHA_18-03-92

Fecha	Hora	Tiempo (min)	Prot del agua (mis.)	Oescenso d (mrs.)	(1/1)	1 + 1'			Observaciones
18-03-92	12,00	0	72,105	0				 	
		0,5		0					
		1		0					
		2	·	0					
		3	72,105	0					
		6	72,105	0					
		7	72,105	0		7			
		8	72,105	0					
		9	72,105	0					
		10	72,105	0					
		12,5	72,105	0					
		14	72,105	0					
		16	72,105	0					
		18	72,105	0					
		20	72,105	0				······································	
		25	72,105	0					
		30	72,105	0				· · · · · · · · · · · · · · · · · · ·	
		35	72,1075	0,0025					
		40	72,11	0,005					
		45	72,11	0,005					
		50	72,1125	0,0075					
	1,00	60	72,125	0,02					
	1,10	70	72,135	0,03					
	1,20	80	72,14	0,035					
	1,30	90	72,15	0,045					
	1,40	100	72,16	0,055					
	1,50		72,17	0,065					
	2,00		72,175	0,07					
	2,10	130	72,18	0,075					•

SONDEO GOTERAS

TIPO DE ENSAYOA_CAUDAL_CONSTANTE (48 h)	N. E 71_54mts
Tabla de medidas en <u>SONDEO_DE</u> BOMBEOS	COTA 183
Distancia al pozo de bombeomts	Q22,19 1/s
Técnico responsable SANTIAGO ADANEZ	FECHA_ 18-03-92

		130014"-"		FECHA_18-03-92					
Fecha	Hora	Tiempo (min)	Prot del agua (mis.)	Descenso d (mts.)	Q (1/s)	1 + 1' 1' (min)			Observaciones
18-03-9	2 2,00	120	80,90	9,36					
	2,30	150	81,11	9,57	22,22				
	3,00	180	81,26	9,72	22,22				
	3,30	210	·81,38	9,85	22,73				
	4,00	240	81,48	9,94	25,00				
	4,30	270	81,58	10,04	22,22				
	5,00	300	81,70	10,16	22,22				
	5,30	330	81,87	10,33	22,73				
	6,00	360	81,91	10,37	22,22	~ · · · · · · · · · · · · · · · · · · ·			
	6,30	390	82,06	10,52	24,37				
	7,30	450	82,23	10,69	22,72				
	8,00	480	82,30	10,76	21,74				
	8,30	510	82,39	10,85	21,28				
	9,00	540	82,53	10,99	21,74				
	9,30	570	82,59	11,05	21,74				
	10,30	630	82,83	11,29	22,73				
	11,00	660	82,875	11,335	21,74				
9-03-92		720	83,02	11,48	21,74				
	1,00	780	83,10	11,56	22,78				
	2,00	840	83,22	11,68					
	8,36	1236	84,09	12,55	21,74				
	9,00	1260	84,21		21,20				
	11,03	1383	84,49	12,67	21,74				
	12,00	1440	84,645	13,105	21,28			 -	1
	2,03	1560	84,91	13,103	22, 22				rimer día bombeand
	6,00	1800	85,37						
	8,00	1920	85,615	13,83 14,075	21,28				
	10,00	2040	85,83	14,29	21,28				•
0-03-92		2160	86,15	14,61	21,74				•
	9,18	2610	86,98	15,44	20,88				
	12,00	2880	87,28	15,74	20,83				
			, 20	, /-	-0,00				

SONDEO GOTERAS

TIPO DE ENSAYO _ A CAUDAL CONSTANTE (48 h)	N. E 71,54
Tabla de medidas en SONDEO DE BOMBEO	COTA 183
Distancia al pozo de bombeo mts	o 22.19 1/s
Técnico responsableSANTIAGO ADANEZ	FECHA_18-03-92

_									PECHALITICS.					
Fecha	Hora	Tiempo (min)	Prot del agua (mis.)	Oescenso d (mrs.)	(1/3)	1 + 1' (min)			Observaciones					
18-03-92 1	12,00	0	71,54					 						
		40''	78,40	6,86				 						
		1	78,86	7,32										
		1호	78,93	7,39				 						
		2	79,00	7,46										
		3	79,10	7,56										
		4	79,20	7,66										
		5	79,25	7,71										
		6	79,30	7,76		······································								
		7	79,34	7,80										
		8	79,38	7,84										
		9	79,425	7,885										
		10	79,48	7,94										
		12,30		8,01										
		14	79,595	8,055										
		16	79,65	8,11	22,32									
		18	79,70	8,16										
		20	79,75	8,21										
		22	79,80	8,26	23,25									
		25	79,85	8,31										
		30	79,94	8,40	22,73									
		35	79,99	8,45	20,83			············						
		40	80,07	8,53	22,22									
		45	80,17	8,63	22,73									
		50	80,23	8,69	22,73									
1	1,00	60	80,345	8,805	23,08									
1	1,10	70	80,445	8,905	23,25									
1	1,20	80	80,605	9,065	22,22				`					
1	1,30	90	80,71	9,17					,					
	1,40	100	80,77	9,23										
1	1,50	110	80,83	9,29	21,74									

ANEJO V-4
Datos

			•		MED	IDAS	DE	E N	IVELYO	CAUDA	AL [2 5 6	/ -	7 7
FE	CHA	SUR GEN C-2	NIVEL (m)	Met. Medid hive	CAUDAL (i 1)	Mét. Médid Caudal	1	T 0	FECHA	SUR GEN (14	NIVEL	Met Medid	CAUDAL	Met Vec s Crush	D U 6
26 <u>19</u> .	0 8 8 0 0 4 9 0 0 7 8 0 0 3 9 2	0	6 / 5 l 5 9 2 6 l 0 4 7 2 l 0		14.	4 A 	5				The second secon				
· · · · · · · · · · · · · · · · · · ·	-										mana i in Mark din i i	-			
						C.	ALH	DAI	DDL A	si.A					
eş eş kiş	er our ta	Tome	OKATORIO EMERIKA EMERIKE EL		1 9,08				6,04 <u>9</u> 0 256	3					
	· · · · · · · · · · · · · · · · · · ·			-		? ! . ! ! # 0	'		27 ·5 5	5					
ONES IN SHE	dasdas		 ;						9,	<u>3</u> -					1
DETERMINACIONES	74 % 74€ % 5020 584*	mg ,								7					
	NO2" NO3" Fe tota	~ 3) #												
	· · · · · · · · · · · · · · · · · · ·		<u></u>					-	10DIFIC						
100L	DIFICACIO DIFICACIO	7 7	ON DE LA F				AUTO AUTO	R	rá faití			FECHA FECHA FECHA FECHA		.04	7 0
									ACIONES						<u> </u>
N:	e del M	AC-	21 : 30.	26	,		*******	•••••	12. 32			***************		•••••••	

· -							A. C. Leage of Arbitral manual districts			· · · · · · · · · · · · · · · · · · ·
				GEOLO	GIA			2 5 6	1 -	7 P
FORMACION	CEOLOCICA D	£ CUIDCOCICIE	Cial	. T (=	. •••	n //	Mea)			
FORMACION	GEOLOGICA EL	e superficie		(Ω.Σ)μν -	т (banal	Baraltica	······	••••••	••••••
	r	TOLOGO OBION P	KINCIPAL	С1.218		Ke.C.an	Barállica.	.)	•••••••	•••••
TRAMO	DE (m)	A (m)		DESCRIPCI	ON		LITOL(ESTRUCTURA (s.I)	OGIA PETROLOGIA	EDAD	Acuifero
00-01		76	Revesti	Le de hor	ucisan. 7. bo	icdras	REVEST			00
00-01	1.6	162	Colada	basaltice	suceriece	.a	LAVASE	BASAL	81	00
0:0 -01	162	235		basaltie			LAVASM	LANZAB	8 /	00
0 0 -01	235	248		baraltic			LAVALE	BASALI	Bi	00
0 0 - 0 (248	367		brialtiers			LAVASM	BIAISIAIL	01	00
00-01	316,7	3 3 13	Colado	bonastice	esceriaec	×	CATASE	BASAL	81	00
0.0 -01	317 3	13815	Colada		.wariva		LAVASM	BIAISIAIL	8:	00
010 - 011	3 8,5	413	Colade	barállic		vec	LAVASE		BII	00
00-01	413	4517		basallice			LAVASM	BIASAL	811	00
0.0 -01	457	463	Colada	basallic			LAUASE	BIASAL	01	00
00-01	4.3	47,5	Colado		e maile	1	MELNAT	JAZAB	8 /	•
00 - 01	475	49,	Colad.		. escoria	1	LI AIV AIS C	BASAL	3/	0.0
00-01	44	54,4	Colado 6				LAVASM	8 A:S.A L	101	00
00 - 01	5'4,4	516	Colado	máltice me mattice banáltice	41 corrien	.	CAVASE	8 4.2.A L	8 1	00
00-01	576			bonáltica l			LAVASM	BASAL	8 1	00
00-01	592			Coladas			LAVAS:	BASAL	8 /	0
01 -02	65	732	Aqua	Glades	brialties)	LAVAS	RASIAL	81	0 1
			,		-/				=:	
		à								=
										=
										=
										=
									=	= ;
!										=
							-			= '
		157				<u>, , , , , , , , , , , , , , , , , , , </u>				
udsom Folija		• • •			or No. 1 Mar 1 May 2000.					 ;
								* · · · · · · · · · · · · · · · · · · ·		
			••••				·		 .	
ESC	LVEMA CONS	TRUCTIO				÷	os SunDao	. 1.4.1.3		
	0					_				
				•				* * * * * ()		
! !	1						÷1,5-4	•		-
	-		ì	engan en			_AUDAL	EXTRAIDO :=++		
			اد	JRACION DEL	ENSAYO		Ut level	ON DEL BONIBEO		
			110		Min.		Horas		. [
					_			<u> </u>		
	4	34	DE	PRESION (m)	<u>_</u>	Щ	DEPRESIO	N (m)	\square	<u>Ш</u>
			- 1	ANSMISIMDAD		\coprod	TRANSMIS	IVIDAD (m²/seg)	33	
			co	EFIC. DE ALMA	CENAMIENTOL	111	L SE COEFIC O	E ALMACENAMIENT	4	

	N	(D	ANA	LISIS DE	AGUA	Ext.	256
			DETERMIN	ACIONES EN	EL CAMPO	41434	
	eche de muestrea		<u> </u>				1
	Localización de la muestra	Tuber, impul	٤.				
	Temperatura del aire °C	29,5					
	¹ Temperatura del agua °C	21,3					
	Conductividad µmhos/cm	4160					
	. pH	7,5					
	CO ₂ ppn	D 144 45					
	NO ₂ -						
	ı		DETERMINAC	ONES EN L	ABORATORIO		
	Fecha de análisie	23-1-81	1		1		
	Laboratorio						
	Residuo seco a 110° C ppm	T.S.D. 395					
	Densided g/cc						
	TA en grados F	0,58		-			
	TAC en grados F	15,50	<u> </u>				
	Dureza total en ppm CO3Ca	15,49					
h	D permanente ppm COoCa		 				
j	pH	0, 49	<u> </u>				
	Conductivided umhos/em	9,4	 				
		635	<u> </u>				
	SiO ₂ ppm	27,60					
	Ca., bbw	17,70					
	Mg** ppm	27,01					
	NH4° ppm	. 6,00					
B	'Ne' ppm	71,90					
	K* ppm	1.00					
Ę	Mn*1 ppm						
F	CO ₃ ppm	6,90					
	HCO; ppm	175,13	•				
	\$0 ₄ ° ppm	14,15					
	F* ppm						
	CI- ppm	104,25		1			
	Bi ppm						
1	I ppm						-i
y -	NO3. bbw	7.44					
		Trazas /					1
	PO4* ppm	0,00					
	Fe ppm	0,00					
	8 ppm						1
, ,-	Cu ppm	0,00					
	Al ppm Cd ppm					<u> </u>	
1-	Cd ppm ppm						-
-	Se ppm						
	u pam	0,01					
· 1	Sr ppm						
	Vi pom						
-	Ce ppm	·				DIAGRAMA DE CETE	<u>'</u>
<u> </u>	li pom				-	DIAGRAMA DE STIF	-
1-	on ppm				% meg /1	i. 60 40 30 0 30 40	% mag/i. 60 40 00
12					- / *** L	Virginia	
1-	A.A.	2,24			- 49"	ment of	
, ,		S,			سلدا سوا	luluy fulijt	ې ليليل

ANALISIS FISICO-QUIMICOS DEL AGUA

DATOS DE LA CAPTA	KCION					4143	4000	3
Tipo	Sigfa	200	` 1 ~~		<u>D</u> /	TOS	DEL	LABORAT
Denominación	2,814	726	<u> </u>	<u> </u>				6-31
Longitud/Profundidad						a de Análi		-2-5-
Localización de la Muestra					N.º	de Labora	orto	705
pecaning of the pide 20-3	يساح حميد						· · ·	
DATOS FISICO-QUIM	UCOS DE C	V 14 D U					= 58	
		-1				<u> </u>	- 26	<i>P/s</i>
Fedra de Muestreo		.co,				mg/1.	Es tu	ırbia
Conductividad	•	Temp. A		55,0		°C	Tiene	e olor
pH		Temp. A		Z6'5		•C	Tiens	sabor
		Dure:17	012	26'1	G. fr	inceses		colori
EXAMEN PRELIMINAR	LABORATO	DRIO		L	L			
Residua seca 110°C		ng/l	·	Dureza perman	- mi mi			Grades france
Densidad		n/cc.		pH		84		
TA		Grades fran	Ctset	Conduct. (19°C	2.)	1500		#mbos/cm
TAC		Grados fran	ceses	51 O.		47		mg/l.
Dureza Total	c	Grados fran	ceses	Total solides di	:::	334		ing/l,
ationes me/l	1	mg/l.		Aniones		me/1.		mq/1.
2 4.L		0'1_	co,	:=				28'8
16 + 1	3	3	<u>.co</u> ,	H				248
FL -		٥	. 50.	<u> </u>				23_
1 +		8,	. -					
+		<u>''</u> S	_CI -					
0)	NO,				_	0'06
	0		110,					3113
Some	1				. 1277.55			
ICPOPLEMENTOS								
			Co					0
			1.					
			Br		.			
	0,0	21	Zn					0
			Pb					0
	0		Cr					D
. R	OBSE	RYACIO	MES:		וום	AGRAMA D	E SHEE	HODISICADO
.R		···· ··· · · - - ·						
•ส. พ.ก. ระกับ การเกาะ ค.ก. การเ	•••••				, K			

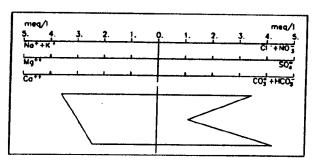
ANALISIS Nº

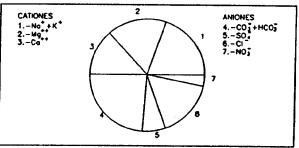
PETICIONARIO : GEO-AGUA, S.A.

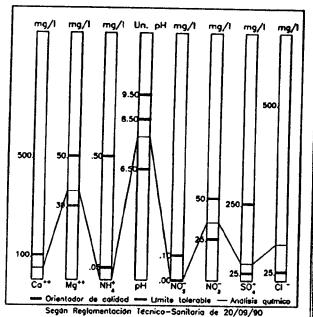
FECHA DE MUESTREO :

FECHA DE ANALISIS : 12-08-91

DENOMINACION: 2561


HOJA DE ANALISIS


RESULTAD(DS ANALI	TICOS :					
CATIONES		mg/l	meq/I	ANIONES		mg/i	/1
Litio	Li+	.00	.00	Sulfatos	so-	55.00	meq/I
Sodio	Na +	80.00	3.48	Cloruros	CI -	103.00	1.14 2.90
Potasio	K*	3.10	.08	Carbonatos	co -	.00	.00
Calcio	Ca **	48.00	2.40	Bicarbonatos	HCO:	259.00	4.25
Magnesio	Mg⁺⁺	36.00	2.97	Nitratos	NO-	35.00	.56
Amonio	NH ⁺	.00	.00	Nitritos	NO 3	.00	.00

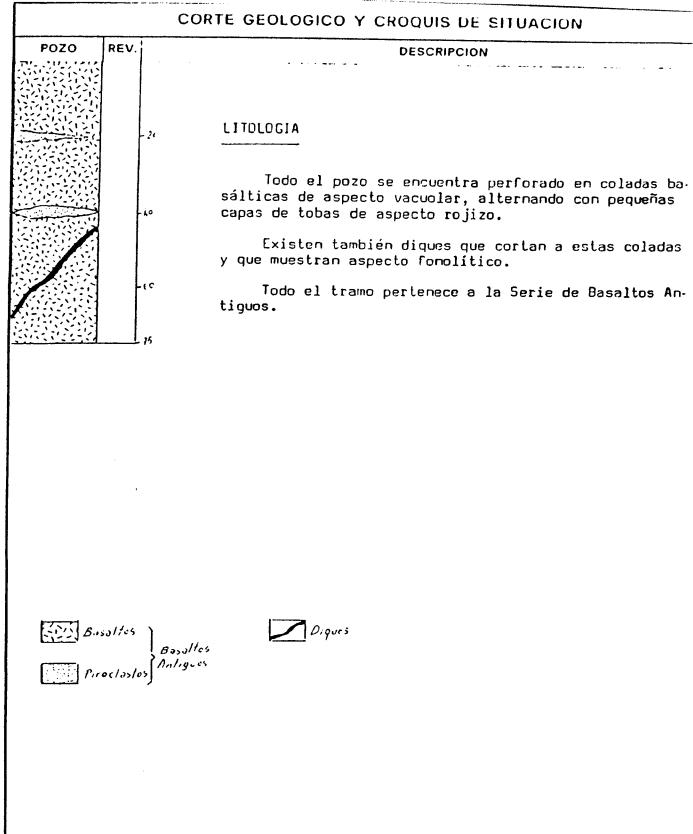

ANALISIS FISICOS :

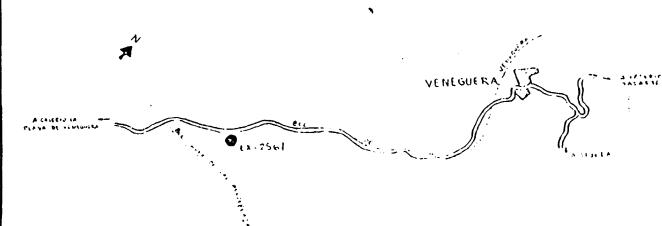
RELACIONES IONICAS

		WEDVOIDIAES IOIA	ICAS		
Conductividad a 25 °C (µS/cm)	888.	CI/Na	.83	Mg/Ca	1.24
Dureza calculada (ppm CaCO ₃)	268.68	CI/(Na+K)	.82	Na/Ca	1.45
pH	7.79	CI/SO.	2.54	Na/K	43.85
Residuo seco calc. (ppm)	634.29	(CO,+HCO,)/Ca	1.77	SO, /Co	.48
Error analitico (%)	.82	$(CO_3+HCO_3)/(Co+Mg)$.79	SO, /(Ca+Mg)	.21

El acui sero 01 esta bajo el vivel del aqua, en colades barálticas de la formación Basaltica.

PROYECTO EXCMO. CABILDO INSULAR DE GRAN CANARIA
POZO LAS QUIERAS


					3.0
SITU	ACION Y COC	ORDENADAS	5	DAT	OS ADMINISTRATIVOS
Isla Municipio	Gran C	anoria	-	Expediente impal	2.561
Lugar	1	co de Ver	neguera	Expedientes posteriore	2,650
Hoja 1:25.000 Hoja 1: 5.000	Antigua:	7	leva25-90S	Fechas de concesion	20 julio 1954
X	. 42	7.220		Plazo de ejecución	
Y Cota	3,089	5.075		Expediente de denuncia	
Profundidad Cota del fondo		73,04 119,96		Profundidad autorizada	
CARACTE	RISTICAS CO		/AS	DATO	S DE LA PROPIEDAD
Diametro libre		2,50	m.	Primer propietano	Angel Lang Lenton
Revestimiento			m	Propietario actual	Costa Canaria SA.
Fecha de comienzo Trabajos actuales	ł .	or a 1920 inquno		- Dиесской	c/ Dr. Juan de Pad: Las Palmas
INSTALACIONES	TIPO	POTENCIA (cv)	CAUDAL (Is)	Presidente	203 / 01///03
Motor	G.M.	75	(1500rpm)		
Bomba	Worthing.	60	20	Direction	
Aire comprimido	NO	- '		Terrenos afectados	Propios
Extractor	NO				Linhing.
Electrificado	NO				
Personal	Uno				


OBSERVACIONES:

GALERIAS CATAS

	L	GALER	IAS						İ	CAT	45				
	Cota (m)	Longit. (m)	Rumbo (9)	Agus	Cota (m)	Langit, (m)	Rumbo (q)	Agua	Cota (m)	Longit. (m)	Rumbo (g)	Agua	Cota (m)	Longit. (m)	į R
AS							İ	Ī							-
AUTORIZADAS								_							ļ
R12							•	·							
Ę															-
_₹								•							
	120	25	0este						120	100	0este)			
	l								**	n	**				
res			.						"	**	11	10			_
Z W					_				• 11	. ".	"]			
EXISTENTES					-								1		į
Ä							}				1	ľ			
	1 .	-		l	İ		j		į		1	- 1	İ	1	

OBSTRVACIONES:

		ANAL	ISIS DE AG	UA				
		DETERMINA	CIONES EN EL	CAM	PO			
Fecha de muestreo	19-8-80_					1		
Localizacion de la muestra	Tub.Salida			1	•	j		
Temperatura del aire °C	29.50					- -		
Temperatura del agua °C	21,30					İ		
Conductividad µmhos/cm	1.100					1		
рН	7,8		-	1 .	-	1	•	- .
CO ₂ ppm			1		•	1		· · · · ·
NO ₂	Nenativo			· -	•••••			
		DETERMINACIO	NES EN LABO	RATO	RIO	<u> </u>		J
Fecha de análisis								
Laboratorio						1		1
Residuo seco a 110° C ppm]			1		
Densidad g/cc.							· 	
TA en grados F						1		
TAC en grados F]	T	1		1		1
Dureza total en ppm CO3Ca		1	1	1				
D. permanente ppin CO3Ca				1				
pH ·				-		1	•	
Conductividad µmhos/cm	•							
SiO ₂ ppm				-				
Ca., bbw				- 		·		·
Mg'' ppm	· 	· · · · · · · · · · · · · · · · · · ·		j ·	-			
NH ₄ ppm				-	- · · - · · · · · · · · · · · · · · · ·	-		
Na ' ppm				-				
K * ppm				+		· - ··· -		
Mn** ppm		1		f-· ·-				****
CO ₃ ppm		l — — — — — — — — — — — — — — — — — — —		-! . 				
HCO ₃ ppm		<u> </u>		-	-	-	···-	
SO ₄ * ppm		 						
F ppm								
CI ppm					•			
Br ppm				-	•			
l ppm				1				
NO ₃ ppm]			!	
NO ₂ ppm							i	
PO ₄ * ppm								
Fe ppm				ļ	-		!	
B ppm								
Cu ppm							į	
Al ppm					· · · · i		1	
As ppm			-				į	
Se ppm								
Li ppm				_			j	•
Sr ppm]	
Ni ppm							-	.
Co ppin					ļ.	ACDAMA	DE STIFF	
Ti ppin		· · · · · · · · · · · · · · · · · · ·				AMANDA	or sint	
Sn ppm Cr ppm					% meq /1.	40 20 0		% meq /1.
Zn ppm				A10				
S.A.R.	· · -			C				خاست.انندا. عان ایا
CLASIFICACION		, . 			tidudi T	ادنىنى	مانيا داداد	· سستان د. ۱۰۱۰ کا ۱۰۱۰

DATUS	DE EXPLOTACION		UATOS DE PERFORACION
Concupto	Date		THE TERFORACION
Zona de utilización Lugar de vertido	Mogan (Veneguera)	Fricha	Profundidad
Utilizacion en riegos (%)	Estangue 100		
Unización en abasto (%)	O		
Uso propio (%)	100		
Venta (%) Horas diarias bombeo	0		
Meses parado	0 0	·	
Caudal medio diario (l/s) Extraccion anual (10 ³ m ³)	6,7	· · · · ·	
Calor	184 NO		
Gases	NO		

OBSERVACIONES:

El pozo puede dar 20 1/s durante 11 horas.

 	,		Pil	EZOMETRIA	Y CAUDA	LES			
Fecha	Altura de la aspiración sobre el fondo (o)	Profundidad defaqua	Tiempo que lleva bombeando ro parado)	Columna estatica imi	Cota del nivel estàtico (m)	Cota del nivel dinamico (m)	Depresion	Caudat (I/s)	C esr
19-8-80	0,50	_61_58	6,5 <u>h</u>	12,00	123,96	123,42	_ D,54	20	"
						• · · · · · · · · · · · · · · · · · · ·			
	· · · · · · - · · · · · ·						-		
· · ·	· · - ·- · ·						-		

OBSERVACIONES: Cuando el agua sube a su máximo nivel, se mantiene durante basta tiempo.

	DOCUMENTACION INCLUIDA						
Orden	Tituto	Fecha	Autor	Observaciones			
¹	Resumen archivo Jef. de Minas	<u> </u>	_ INTECSA				
3	·			• • • • • • • • • • • • • • • • • • • •			
:	· · · · · · · · · · · · · · · · · · ·						

DATOS DE CONTROL

Concepto	Fiicha	Autor	Profesi ón
Topografia	28-11-80	E. Fernandez	Evo, de Minas
Geologia	27-11-80	F. Martinez	Geó lago
Hidrogeologia	26-8-80	S. Celgado	Hidrogeálago
Dates generales	19- 8-80	J. Curballo	Aux. Técnico
Encuesta "in situ"	11		MOX. 1800100
Revisión general	Dic AC	La Celeado	Hidrográlogo

INTECSA

264 ISLA DE

DATOS DE L	LA CAPTACIO	N				D A T		051	LABOR
Ties		Sigle	2	5/		Feche d		$\overline{}$	1 - 7
Denominación						Feche d			7-7-
Longitud / Profund	lided	-				N.º de L			gar
Localización de la	Muestra								
DATOS FISH	CO - QUIMICO	OS DE	CAMPO						
Fecha de Muestre	0								
Ph		•••	Temp Aire			•c		Co,	
Resistividad		hm, cm.	Temp. Agu	•		•c		0,	7
			Dureza Toti	·'		mg I. Co	, C•	CI	
EXAMEN PR	RELIMINAR L	OBORA	ATORIO						<u> </u>
Assiduo Seco 110º	·c		_mg l		Dureze per	met.		. (:	mol
Densidad		<u>-</u>	gr cc.		Ph			102	
TA		 T:://	Grados fre	inceses	Conduct. (20°C.)		771	mho
TAC	22	'YJ	Grados fra	uceses	\$10,		4:	3,87	mg /
Dureza Total	218	,5	mg I de C	o, Co					
ELEMENTOS	MAYORES								<u>-</u>
Cationes			mg l.	An	iones		ne / 1.		mg .
C•	1.459	_ 31	1 86	co, =				·· ·	
Mg	2,78	_ 3	5,80	_co, H_		4′	49	-	223'
<u>ч</u> н, ÷		_	, //ā '水'刀'''	so. =		;	61	3 _	29,4
<u> </u>	348_		0,00	F					<u>aa.</u>
<u> </u>	0,084	_ ;	3,28.	cı			80	<u>'</u>	99
Mn		 .	- · - · · · ·	<u>40, –</u>		-01	[2.	<u>r</u> _	-7,-t-
·•	010011	_		№,-		(1)		-,, -	
Suma	7934	<u> </u>				8'	02	<u>. X </u>	
MICROELEM	ENTOS				-		· .	·-···	
<u> </u>		_		Co					
<u> </u>		_			—				
<u> </u>		_	·· 	_Br					
J		. -		_Z~					
Sr		_		Pb				_	
łı				Cr			· 		
		OBSE	RVACIO	1831		_ 014	LGRAM	A DE SI	IFF MOL
						к	 		
eava						_ , ~,	} 	!. 	
:un						ري د , ا	}••••	- 	
	1 ^				·		:		

				STICAS CO	NSTRUCI	IVAS [2 5	61-7
	LA OBRA PRINCI	V		13.2				······································
			·· • • • • • • • • • • • • • • • • • •		FECHA ANT.	44.5.X.55 .9) <u> </u>	<u> </u>
CONTRATISTA	PRACION EXC	rvace od	Con ext		ENTIDAD QUE	CONTRATA Y	0	
CONTRAINSIA			• • • • • • • • • • • • • • • • • •		EIECUTA LA OB	R4		
				MANANTI	AL			
TIPO DE SURC	SENCIA		ACONDICION	AMIENTO	F	RECUENCIA DI	E LA SURCEN	CIA
OBSERVACION	iES			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	·····
				DD (UDDT	ICAI			***************************************
	P	ERFORACIO		BRA VERT	ICAL	ne.	VESTIMIEN	T()
TRAMO 8	an DE	, A _		BSERVAL CARS	. 17 É		Sameon	Eigeson Natu
			nm:		71	#N:	mm·	-mm.
	> 10,		3000		0.	1 7 6	2800	100 Horas
2 1 - 0 2	16 5	1 1 3 2		galerie y 4 cates				.co
				# ** *	<u> </u>			
=_=_				•				
<u> </u>								
						· 		
			RA HO!			i		
TRAMO Ru go		*8* 3	741 T. J.				10.	darkur ves
11-93	3 3 16							
01-04	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		100	<u> 25</u> 14			<u> </u>	Galaria bajo d Cata bajo el
1 - 45	<u> </u>			100				Cala bajo el
1 - 0 6	5 3	- ·	101	100			· · · · · · · · · · · · · · · · · ·	
1 - 0 7	š j		1 0 0	100			; o	
							:	
====	= =							
	-							
			====					
								* * * * * * * * * * * * * * * * * * * *
<u> </u>								• • • • • • • • • • • • • • • • • • • •
					7 (•••••••
	-			┷┷┷┪╏┖┻┷	الللساال		_	*****

7 7	•	IDENTIDAD	and the second s
Instituto Tecnológico Geol/Minero de España	NATURALEZA PORO 4 OFFAS D	POTE/SIGLAS	2 5 6 1 - T P
ARCHIVO DE PUNTOS	Nº DE PUNTOS DESCRITOS	O A M DR REGISTRO	414340003
ACUIFEROS CANARIAS	erre Captación de	bguas to move a	las Goteras
	\$100 G	10 .	
Something of South Association	•		
			185
·	4 2 2/8 R	7 2 2 0	Mapa topog 1
	•	5075 +0	Brocal a D'Ism del buelo
CROQUEDUS(**)		4 A - 1	
	Maray		Las Palmas
	Mogau		5 0
		1 1 1 3	
		<u> </u>	Mogain
	Fisto N. a. I	40ja del Cabrildo = 7	1 2
	Megas 82-8	5	
		1113-1	Barranco de Veneguera
A Comment		25905	
	Jenneth Gran Can	iana II	
Have			
THE WARRENCE OF THE PARTY OF TH	Activities	83	
EXPLOT	NCION	·	ISCANO
		PROPHEDAD COTA	Circle S1
EXPLOTACION 1 BUJACION DECADOS	Maricullura 100% 2	t	Ruis Martines
CAL DAL DE BONEFO - 1	50,4	el Trian	v Nº 120 - 7° pino I
REGIMEN MEDIO DIARIO	8	7	Las Palmas de Gran Canario
RECOMEN AND AL	281	` `	928373549
CANTIDAD ANUAFFERN A		ENCARGADO Rouan	
VERUDO a directo a e		1	Almericos Nº 3/n
EQUIPO			
	bomba electrice mungie	<u>u</u>	140- Mogan Vanegreras 928740046
electrificación y aut		4,46×0	
POTENCIA: (4)	3 0	J [NA No lieut.
SISTEMA DE AFORO. W. T	ieme	D RECCION .	
OTROS EQUIPOS . A Win.		CPA PORTACION III	
••••		initoso .	<u> </u>
	DATOC CONT	I EMENTADIOS	
	1	PLEMENTARIOS	
PERIMETRO DE PROTECCION	10 SE SOUR 0 BIE	SHOGRAFIA DEL PUNTO ACUFE	Ris tido ferrios Hidraulico

DOCUMENTOS INTERCALADOS

	MEDIDAS DE	NIVEL Y CAUDAL	4 1 4 3 4				
FECHA SUR GEN (IA) (IA) FECHA Nº MUESTRA LABORATORIO REFERENCIA DE LA MUESTRA CONDICIONES DE MUESTREO	Mar Medid (1 s) Gaudal B B B 7 2279 5 A F	FECHA SOR SIN GEN CIA (M	Medid Medid U D				
TEMPERATURA (°C) CONDUCTIVIDAD (µS:cm) pH Eh (mv) O2 disuelto (mg 1) CO2 disuelto (mg 1) TA °F TAC °F SIO2 (mg/1) NH4+ (mg/1) NO2* (mg 1) NO3* (mg 1) Fe total (mg/1)	# 270 \(\) \(\						
MODIFICACION	AUTOR	ACIONES Santiago Adánes	FECHA FECHA				
Bomba a 150 m	OBSERVACIONES Tabo piesoacétrico Bourba a 150 m de profundidad						

414340003 **GEOLOGIA** FORMACION GEOLOGICA DE SUPERFICIE FORMACION GEOLOGICA FIN DE LA OBRA PRINCIPAL FORMACION GEOLOGICA FIN DE LA OBRA PRINCIPAL FORMACIÓN BASALTICA (Basallo Autiques) HIOLOGIA TRAMO Đ€ A (m) DESCRIPCION FDAD PETROLOGIA Coladas basallicas 213 BASAL 33 0/ LAVAS CROQUIS **ENSAYOS DE BOMBEO** TIPO DE ENSAYO 180392 CAUDAL EXTRAIDO (m3 h) CAUDAL EXTRAIDO (m3 h) DURACION DEL BOMBEO DURACION DEL BOMBEO 48

TRANSMISIVIDAD (m2 seg)

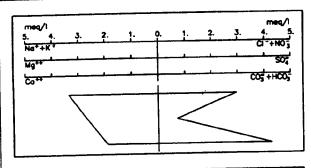
COEFIC DE ALMACENAMIENTO

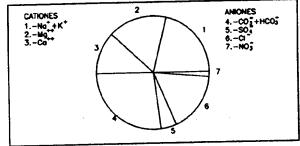
TRANSMISIVIDAD (m2 seg)

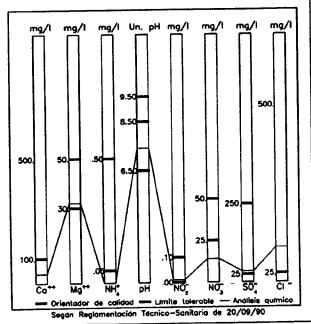
COEFIC DE ALMACENAMIENTO

ANALISIS Nº :

FECHA DE MUESTREO : 20-03-92


PETICIONARIO : GEO-AGUA, S.A. FECHA DE MOLSTREO : 20-03-92


DENOMINACION: SONDEO GOTERAS (48 H. de Bombeo)


HOJA DE ANALISIS

RESULTADOS	S ANALII	ICOS :				,.	/
CATIONES		mg/l	meq/i	ANIONES		mg/l	meq/I
Litio	Li+	.00	.00	Sulfatos	SO ₇	34.00	.71
Sodio	Na +	75.00	3.26	Cloruros	CI ¹	97.00	2.74
Potasio	K+	3.20	.08	Carbonatos	CO 🚡	.00	.00
Calcio	Ca++	38.00	1.90	Bicarbonatos	HCO3	261.00	4.28
Magnesio	Mg**	32.00	2.64	Nitratos	ИО-	14.00	.23
Amonio	NH‡	.00	.00	Nitritos	NO 2	.01	.00

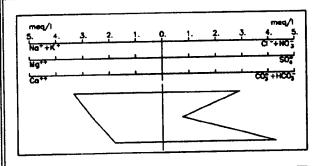
ANALISIS FISICOS :		RELACIONES IONI	CAS		
Conductividad a 25 °C (µS/cm)	711.	CI/Na	.84	Mg/Ca	1.39
Dureza calculada (ppm CoCO ₃)	227.16	CI/(Na+K)	.82	Na/Ca	1.72
oH	7.41	CI/SO,	3.87	Na/K	39.83
Residuo seco calc. (ppm)	507.86	(CO,+HCO,)/Co	2.25	SO, /Ca	.37
Error analitico (5)		(CO,+HCO,)/(Ca+Mg)	.94	SO, /(Ca+Mg)	.16

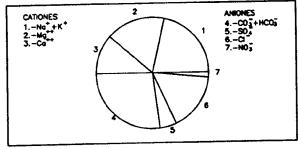
ANALISIS Nº

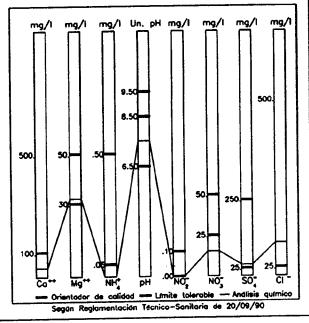
FECHA DE MUESTREO : 19-03-92

PETICIONARIO : GEO-AGUA, S.A.

FECHA DE ANALISIS : 09-04-92


DENOMINACION: SONDEO GOTERAS (24 H. de Bombeo)


HOJA DE ANALISIS


RESULTADO	S ANALIT	icos:					
CATIONES		mg/l	meq/l	ANIONES		mg/l	meq/l
Litio	Li*	.00	.00	Sulfatos	SO ₇	36.00	.75
Sodio	Na +	75.00	3.26	Cloruros	CI ²	94.00	2.65
Potasio	K+	3.20	.08	Carbonatos	co ;	.00	.00
Calcio	Ca++	36.00	1.80	Bicarbonatos	HCO;	261.00	4.28
Magnesio	Ma**	32.00	2.64	Nitratos	NO-	15.00	.24
Amonio	NH‡	.00	.00	Nitritos	NO 2	.00	.00

RELACIONES IONICAS

ANALISIS FISICUS :		MEDICIONES ION	J, 10		
Conductividad a 25 °C (µS/cm)	716.	CI/No	.81	Mg/Ca	1.47
Dureza calculada (ppm CaCO ₃)	222.16	CI/(Na+K)	.79	No/Ca	1.81
pH parents (pp. see 3)	7.52	CI/SO,	3.54	Na/K	39.83
Residuo seco calc. (ppm)		(CO ₃ +HCO ₃)/Co	2.38	SO ₄ /Ca	.42
		(CO,+HCO,)/(Ca+Mg)	.96	SO, /(Ca+Mg)	.17
Error analitico (%)		(37)		•	

	CARACTERI	STICAS CO	NSTRUCT	rivas 4	143	400	003
DESCRIPCION Souder LONGITUD DE LA OBRA PRINC TIPO DE PERFORACION	CIPAL (m) 2 /	2	FECHA			180	3 9 2
CONTRAIISIA		· · · · · · · · · · · · · · · · · · ·	ENTIDAD QUE (EJECUTA LA ()B	CONTRATA Y RA	Particul	lar	6
		MANANTIA	\L				
TIPO DE SURGENCIA OBSERVACIONES		AANENTO		RECUENCIA DE	IA SURCEN	•CIA	
	0	BRA VERTI	CAL	***************************************	1.		····
Ran DE	PERFORACION			T	ESTIMIEN	·	
TRAMO 80 (m)	(m) (mm)	OBSERVACIONES	DE (m)	A (m)	⊘ interior (mm)	Espesor (mm)	Naturaleza
		Saudeo					
	OBRA HORI		NCLINAI)A		•	
TRAMO Ran Mét RUN 80 medida		ISTANCIA L ORIGEN ANCH (m) (m)	SECCION O x ALTO (m)	્રે .	clina ión (%)	OBSERVACIO)NES

• 1 •		IDENTIDAD					
Instituto Tecnológico Geol/Vinero de España	NATURALEZA Soudeo	Nº DE REGIS	TRO 414340003				
ARCHIVO DE PUNTOS	Nº DE PUNTOS DESCRITOS	O / TOPONIMIA	Soudes Goteras				
ACUIFEROS CANARIAS	OBIETO						
	SITUAC	ION					
COORDENADAS GEOGRAFIC	CAS COORDENADAS	U.T.M.	СОТА				
LONGIFUD LATITUD	HUSO Y ZONA 4 2 28 R	Y	ORIGEN DE LA COTA Topog 1125.000 /				
	308	[5 [6 4 5]	Tubo pierometrico				
CROQUIS DE SITUACIO		POGRAFICAS 50.000	PROVINCIA Las Palucas				
Çaşa	NUMERO	2 5.000	TERMINO MUNICIPAL Hogau				
A stauene	Trace boyan NUMERO		IUGAR Bes de Veurguera				
A Coudes 4	oteros ISLA GAZU	accarria 117 Gran Caccarria					
EXPLOT	ACION		USUARIO				
EXPLOTACION UTILIZACION DEL AGUA CAUDAL DE BOMBEO (m³ · h) REGIMEN MEDIO DIARIO REGIMEN ANUAL	350 (dam³) 503	PRESIDENTE DIRECCION	las Palmas				
EQUIPO DE EXTRACCION MINISTERIA DE AFORO . Cau	Bomba electrica automotivo B 40 delinetro y lantaura 5 be o automotivo 3	TELEFONO 928-569 928-569 DIRECCION FACULT DIRECCION	7324 Casa 928569320 175 Bar ATIVA No France				
	DATOS COMPLEMENTARIOS						

PERIMETRO DE PROTECCION No. 24....2064 0 BIBLIOGRAFIA DEL PUNTO ACUITERO

REDES A LAS QUE PERTENEL E EL PUNTO

ANEJO V-3

Fichas

***	Instituto Tecnológico <u>GeoMinero</u> de España
	AREA DE LABORATORIOS Y TECNICAS BASICAS

CAÑADA HONDA (PIEZOMETRO)

TIPO DE ENSAYO RECUPERACION	N. Emts
Tabla de medidas en P1EZOMETRO OBSERVACION	
Distancia al pozo de bombeo7_mmts	Q
Técnico responsableSANTIAGO ADANEZ	FECHA 26-09-91

Fecha	Hora	Tiempo (min)	Prot del agua (mis.)	Descenso d (mis.)	Q (1/s)	1 + 1' 1' (min)	D.R.	Observaciones
	10,00	120	58,90			25	2,12	
	10,30	150	58,735			20	1,96	
	11	180	58,59			17	1,81	
	11,30	210	58,47			14,5	1,69	
	12	240	58,37	1		13	1,59	
	12,30	270	58,29			11,5	1,5	
	13	300	58,21			10,5	1,43	
	13,32	332	58,13			9,6	1,35	
	14,00	360	58,08			9	1,3	
	14,30	390	58,025			8,3	1,25	
	15,00	420	57,98			7,8	1,2	
	15,30	450	57,93			7,3	1,15	
	16,00		57,89			6,9	1,09	
	16,30	510	57,85			6,6	1,07	
	17,00		57,815			6,3	1,04	
	17,30		57,78			6	1,00	
	18	600	57,75			5,7	0,97	
	19	660	57,71			5,3	0,93	
	8	720	57,68			4,9	0,9	
	9	780	57,645			4,6	0,865	
	10	8 40	57,61			4,4	0,83	
	11							
	12	960	57,56			4,0	0,78	
27-9-91	1	1020	57,53			3,8	0,75	
	2	1080	57,50			3,6	0,72	
	0.00	1//0	57 27			3,0	0,59	,
	8,00	1440	57,37 57,355			2,9	0,575	•
	9,00	1300	31,333			2, 7	3,373	

CAÑADA HONDA (PIEZOMETRO)

TIPO DE ENSAYO _RECUPERACION	N. E mts
Tabla de medidas en PIEZOMETRO OBSERVACION	
Distancia al pozo de bombeo 7 mmts Técnico responsableSANTIAGO ADANEZ	FECHA_26-9-91

Fecha	Hora	Tiempo (min)	Prot del agua (mis.)	Descenso d (mts.)	Q (1/1)	1 + 1' 1' (min)	D.R	Observaciones
26-9-91	8,00	0	63,45				6,67	
		12	63,19			5687	6,41	
		1	62,64			2844	5,86	
		1½	62,14			1896,3	5,36	
		2	61,75			1422,5	4,97	
		3	61,32			949	4,54	
		4	60,92			712	4,14	
		5	60,78			570	4,00	
		6	60,65			475	3,87	
		7	60,56			407	3,78	
		8	60,52			356	3,74	
		9	60,45			317	3,67	
		10	60,41			285	3,63	
		12	60,33			238	3,55	
		14	60,25			204	3,47	
		16	60,19			179	3,41	
		18	60,13			159	3,35	
		20	60,08			143	3,3	
		25	59,95			115	3,17	
		30	59,86			100	3,08	
		35	59,78			82	3,00	
		40	59,70			74	2,92	
		45	59,61			64	2,83	
		50	59,54			58	2,76	
	9,00	60	59,42			48	2,64	
	9,10	70	59,33			42	2,55	
	9,20	80	59,22			36,5	2,44	
	9,30	90	59,14			32,6	2,36	•
	9,40	100	59,04			29	2,26	•
	9,50	110	58,97			27	2,19	

CAÑADA HONDA (SONDEO)

TIPO DE ENSAYO _ CAUDAL CONSTANTE (48h)	N. E _ 59,66
Tabla de medidas en SONDEO DE BOMBEO	COTAmts (
TIPO DE ENSAYO <u>CAUDAL</u> CONSTANTE (48h) Tabla de medidas en <u>SONDEO DE BOMBEO</u> Distancia al pozo de bombeo <u>mts</u>	Q24 1/s
Técnico responsableSANTIAGO ADANEZ	FECHA 24-09-91

Fecha	Hora	Tiempo (min)	Prot dei agua (mis.)	Descenso d (mts.)	(1/3)	1 + 1' (min)				Observaciones
24-09-91	8,00	0	59,66					 	10	$h 46 - T^{\circ}C = 30,$
		1/2	67,61						 	·
		1	72,76							
		1,5								
		2								
		3	93,36							· · · · · · · · · · · · · · · · · · ·
		4	100,02			POR AVER	IA EN	LA SON	DA	
		5	100,92		NO F	S POSIBLE				
		6	100,98			MEDIDAS E				
		7	100,99			EO. EN AD		1	ł .	
		8	100,995		1	RAN EN EL				
		9					1.11464			
		10								
		12	101,15							
		14								
		16								
		18	100,13							
		20								
		25								· · · · · · · · · · · · · · · · · · ·
		30				-			·	
		35								· · · · · · · · · · · · · · · · · · ·
		40								
		45								
		50								
	9,00	60								
		70_								
		80								
		90								`
		100								`
		110								
				·						

TOPONIMIA: CAÑADA HONDA

(PIEZOMETRO)

TIPO DE ENSAYO A CAUDAL CONSTANTE (48 h)	N. E. 56,78 mts
Tabla de medidas en PIEZOMETRO	COTA_160
Distancia al pozo de bombeo7_mmts	Q24 1/s
Técnico responsable SANTIAGO ADANEZ	FECHA 24-09-91

Fecha	Hora	Tiempo (min)	Prot del agua (mis.)	Descenso d (mts.)	Q (1/1)	1 + 1' 1' (min)		Observaciones
24-09-91	10,00	120	61,02	4,24	24,50			10,15 Q = $21,91$
	10,30	150	61,23	4,45	22,29			
	11,00	180	61,38	4,60	22,41			10,45 Q = 22,38
	11,30	210	61,56	4,78	22,62		 	
	12,00	240	61,68	4,90	24,63			
	12,30	270	61,94	5,16	23,54			
	1,00	300	62,06	5,28	24,30			
	1,30	330	62,16	5,38	23,58			CAUDAL
	2,00	360	62,24	5,46	23,29			ESTABILIZADO
	2,30	390	62,30	5,52	23,96	· · · · · · · · · · · · · · · · · · ·		EN 24 1/s
	3,00	420	62,36	5,58	24,20			
	3,32	452	62,42	5,64	24,21			
	4,00	480	62,46	5,68	24,15			
	4,30	510	62,51	5,73	24,12			
	5,00	540	62,54	5,76	24,17			
	5,30	570	62,59	5,81	24,14		 	
	6,00	600	62,62	5,84	24,44			
	7,00	660	62,69	5,91	24,18			
	8,00	720	62,75	5,97	24,25			
	9,00	780						
	10,00	840					<u> </u>	
	12,00	900	63,03	6,25	25,38			
25-09-91	3,30	1110	63,24		24,38			
	8,11	1391	63,09	6,31	22,72		 	
	12,03	1623	63,03	6,25	23,15		 	
	4,31	1771	63,19	6,41	23,19		 	
	16,48	1908	63,19	6,41	23,26		 	
	19,55	2095	63,22	6,44	23,21		 	
	23,26	2306	63,33	6,55	21,74		 	`
26-09-91	7,58	2818	63,45	6,67	25,16		 	
	8,23	2843	63,45	6,67			 	

**	Instituto Tecnológico <u>GeoMinero</u> de España
	AREA DE LABORATORIOS Y TECNICAS BASICAS

CAÑADA HONDA (PIEZOMETRO)

TIPO DE ENSAYO A CAUDAL CONSTANTE (48 h)	N.E. 56,78 mts
Tabla de medidas en PIEZOMETRO	
Distancia al pozo de bombeomts	
SANTIAGO ADANEZ Técnico responsable	

Fecha	Hara	Tiempo (min)	Prot del agua (mis.)	Oescenso d (mts.)	Q (1/s)	1 + t' t' (min)		Observaciones
24-09-91	8,00	0	56,78					
		1/호	57,08	0,30				
		1	57,53	0,75				
		1,5	58,05	1,27				
		2	58,41	1,63				
		3	58,93	2,15				
		4	59,24	2,46				
		5	59,42	2,64				
		6	59,53	2,75	24,44			
		7	59,62	2,84				
		8	59,70	2,92				
		9	59,76	2,98				
		10	59,84	3,06				
		12	59,91	3,13				
		14	59,98	3,20				
		16	60,05	3,27				
		18	60,12	3,34				
		20	60,17	3,39	24,82			
		25	60,29	3,51				
		30	60,40	3,62				
		35	60,50	3,72			 	
		40	60,58	3,80			 	
		45	60,65	3,87				
		50	60,67	3,89			 	
	9,00	60	60,69	3,91				
	9,10	70	60,71	3,93				
	9,20	80	60,73	3,95				
	9,30	90	60,81	4,03				٠
	9,40	100	60,88	4,10				`
	9,50	110	60,96		23,40			

ANEJO V-2
Datos

		MEDIDA	AS DE N	IVEL Y CA	AUDAL				
	FECHA SUR NIVEL GEN (m).	Met CAUDAL M Medid Me	61 0 T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FECHA FECHA I A I A I I A I A I I A I A I I A I A	S. S. SIVE (SEA) (- AUDAL		5
المسلم				DEL AGU					
N C	ECHA AP MUESTRA LABORATORIO EFFERENCIA DE LA MUESTRA CONDICIONES DE MUESTREO BETODO DE TOMA UNTO DE MUESTREO TEMPERATURA (PC) CONDUCTIVIDAD (µ5/cm) pH Eh (mv) O2 disuelto (mg +) CO2 disuelto (mg +) CI* (mg +1) TA = P TAC = P SIO2 (mg +1) NO3* (mg +1) Fe total (mg +1)								
		INSTRUCCIO						·	
HOD	ERA INSTRUCCION DE LA FICHA IFICACION IFICACION IFICACION		NUTOR	lau Hidrol	•••••••••••••••••••••••••••••••••••••••	FECHA FECHA FECHA	290	9,9	
			*****	•••••	•••••	***************************************	•••••	·····	

GEOLOGIA FORMACION GEOLOGICA DE SUPERFICIE Barállo Autiques Tormación Barállica PORMACION GEOLOGICA FIN DE LA OBRA PRINCIPAL Barállo Autiques Torquedin Barállica LITOLOGIA TRAMO D٤ DESCRIPCION EDAD ESTRUCTURA (51) Acuitero PETROLOGIA Colodas basallicat alterate (AVAS 00-01 160 BASAL 3 2 01 GEOLOGIA DEL MANANTIAL CROQUIS PARAMETROS HIDRAULICOS TIPO DE ENSAYO TIPO DE ENSAYO CAUDAL EXTRAIDO (m3/h) CAUDAL EXTRAIDO (m34) DURACION DEL ENSAYO **DURACION DEL BOMBEO** 48 Min. 00 TRANSMISIVIDAD (m2/ seg) TRANSMISIVIDAD (m2/seg).... COEFIC. DE ALMACENAMIENTO COEFIC DE ALMACENAMIENTO

414330002

PLAN HIDROLOGICO DE GRAN CANARIA

Propertion

TIPO DE OBRA

NOMBRE

CAÑADA HONDA

EXPEDIENTE 5917BTP

SITUACION Y COORDENADAS

Isla

GRAN CANARIA

COORDENADAS

X: 425. 770

Municipio

12 MOGAN

U.T.M.

Y: 3. 084. 000

Toponimo

BCO. DE VENEGUERA

Z: 160

Hoja 1/25.000

Sondeo

Hoja 1/5.000 Ant.

107

Profundidad/longitud

Hoja 1/5.000 Anc.

Hoja 1/5.000 Nue. OBSERVACIONES SE LE PUSO EL MISMO EXP. QUE EL SONDEO QUE FUNCIONA, QUE ESTA A UNOS 4 m DEL 5917 TP. EL MAQUINISTA NO SABE POR QUE NO SE ACABO

PERO CREE QUE FUE POR DESVIO DE LA COLUNNA.TIENE AGUA.

DATOS ADMINISTRATIVOS

DATOS DE LA PROPIEDAD

Propietario AGRICOLA TABAIBAL

Presidente

Direccion TRIANA Nº120,PISO 7º.TLF:373549.

Direccion

LAS PALMAS

OBSERVACIONES

CARACTERISTICAS CONSTRUCTIVAS

Abandonado

Diametro libre 0,50 m. Revestido Si

MOTOR

potencia (C.V.) caudal (l/seg)

Longitud del Revestimiento

9 m.

de

BOMBA

No Tiene

Tipo

Calor No

Gases No

Extractor No

Electrificado

No

DATOS DE EXPLOTACION

USO

Riego No

Abasto No

Otros Usos No

CONSUMO

Uso Propio No

Venta No

Venta No
Vseg. cada hora. Dias al mes de bombeo

, meses al año

OBSERVACIONES

Horas diarias de bombeo

PIEZOMETRIA

Fecha 05/09/90

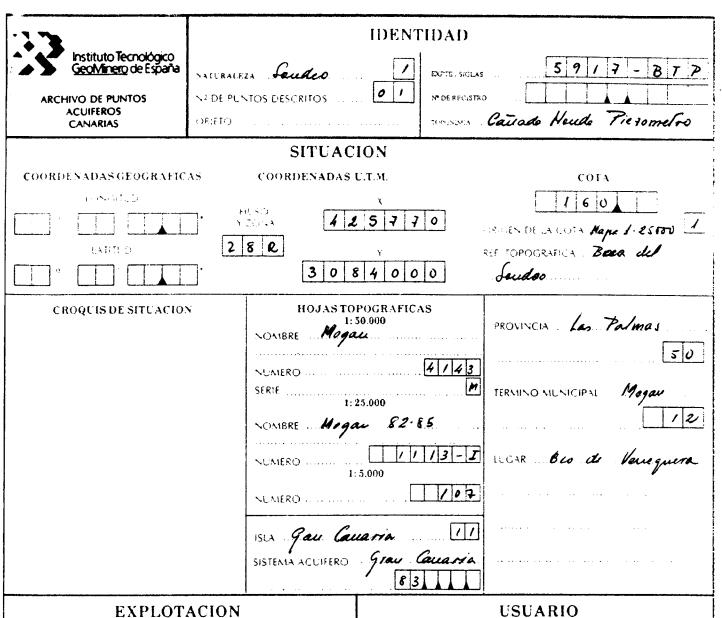
Nivel ESTATICO

Profundidad del agua

6, 30 m.

Horas Bombeando

0,0


Altura de la aspiracion sobre el fondo

Horas Parado

0,0

OBSERVACIONES

	CARACTERISTICAS CONSTRUCTIVAS									
LONGITUD DE L	A OBRA PRINCI	Torcid	16	0 2		ECHA				
CONTRATISTA	CONTRATISTA ENTIDAD QUE CONTRATA Y : O EIECUTA LA OBRA Particular 6									
	MANANTIAL									
	TIPO DE SURGENCIA									
			0	BRA VE	RTI	CAL				
	P	ERFORACION				CAE	RE	VESTIMIEN	то	
TRAMO go		A (m)	<i>3</i> (mm)	OBSERVACIO	NES	DE (m)	(m)	Ø interior (mm)	Espesor (mm)	Maturaleza
				fudeo						
Т	т т	OBR	—— г—		L/I	NCLINA	DA	,		
TRAMO Ran 80	Mét RU medida			DISTANCIA AL ORIGEN (m)	ANC+	SECCION 10 x ALTO (m)	Ø (mm)	Inclination +/- (%oo)	Ø85£R√A©:	ONES

PROPIEDAD Agricolo Tabarbal. **EXPLOTACION** UTILIZACION DEL AGUA Non utiliza PRESIDENTE Corla Cavarias S. A. c/Triana Nº 120 Piso 7 CAUDAL DE BOMBEO :-3 las Pulmas de G.C. 928373549 REGIMEN MEDIO DIARIO CP Y POBLACION REGIMEN ANUAL TELEFONO CANTIDAD AND ALEXTRAIDA MARI ENCARGADO .. Ra/al Luares VESTIDIO A Pueblo de Veneguera (Bar) **EQUIPO** CP Y POBLACION FOR THE BEST RANGES TELEFONO 928-569320 928569324 D'OPCCION FACULTATIVA POTENCIA: 1.1 SISTEMA DE AFORO CP Y POBLACION OTROS EQUIPOS **DATOS COMPLEMENTARIOS**

BIBLIOGRAFIA DEL PUNTO ACUIFERO

REDES A LAS QUE PERTENECE EL PUNTO

0

PERIMETRO DE PROTECCION

DOCUMENTOS INTERCALADOS

		MEDIDAS DE NIVEL Y CAUDAL 4 1 4 3 3 0 0 3 2							
	,								
	CA (m)	Met CAUDAL Met C T FECHA SUR SIVEL Met CAUDAL Met Caudal S S S Caudal S S Caudal S S S Caudal S Caudal Caudal							
		CALIDAD DEL AGUA							
R	ECHA REMUESTRA LABORATORIO REFERENCIA DE LA MUESTRA CONDICIONES DE MUESTREO RETODO DE TOMA UNTO DE MUESTREO	7 9 0 8 8 0 0 5 0 9 9 0							
DETERMINACIONES IN SITU	TEMPERATURA (PG) CONDUCTIVIDAD (µS/cm) pH Eh (mv) O2 disuelto (mg/t) CO2 disuelto (mg/t) TA (PF SIO2 (mg/t) NH4+ (mg/t) NO2* (mg/t) NO3* (mg/t) Fe total (mg/t)								
INSTRUCCION Y MODIFICACIONES									
PRIMIERA INSTRUCCION DE LA FICHA									
MODIFICACION I AUTOR Plan Hidrolyico G.C FECHA MODIFICACION I AUTOR Lantingo Adánuz FECHA PECHA AUTOR FECHA FECHA									
<i>!</i>	OBSERVACIONES MAC-21:3320								

GEOLOGIA

4 1 4 3 3 0 0 3 2

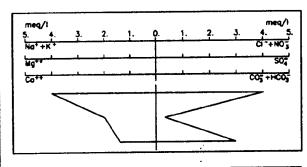
		E SUPERFICIE	Basallo Auli	ques 17	Tormacie	harállica! v barállica		
TRAMO	DE (m)	A (m)	DESCRIPCION		LITOLO ESTRUCTURA (SI)		EDAD	Acuiteko
			Allemaucia da la perconoceas, sela allera da s	NANTIAL				
DESCRIPCION .								
	CROQLI	S		PARAMET	TROS HIDRA	AULICOS		
			TIPO DE ENSAYO FECHA	SAYO Min. (149)	FECHA CAUDA DURACI HOTES DEPRESH TRANSM	E ENSAYO L EXTRAIDO (m³/h) ION DEL BOMBEO Mir ON (m) ISIVIDAD (m²/ 149) DE ALMACENAMIEN		

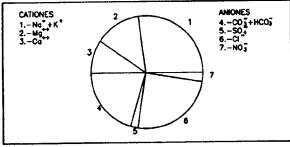
ANALISIS Nº :

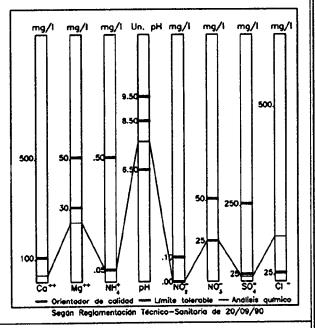
FECHA DE MUESTREO : 27-09-91

PETICIONARIO : GEO-AGUA, S.A.

FECHA DE ANALISIS : 28-01-92


DENOMINACION : DESPUES DE LA RECUPERACION


HOJA DE ANALISIS


RESULTADO	IS ANALII	1002 :					
CATIONES		mg/l	meq/l	ANIONES		mg/l	meq/l
Litio	Li +	.00	.00	Sulfatos	SO.	16.00	.33
Sodio	Na +	88.00	3.83	Cloruros	CI [±]	128.00	3.61
Potasio	K+	6.80	.17	Carbonatos	co ;	.00	.00
Calcio	Ca ++	28.00	1.40	Bicarbonatos	HCO;	181.00	2.97
Magnesio	Mg ^{*+}	24.00	1.98	Nitratos	NO-	25.00	.40
Amonio	NH;	.05	.00	Nitritos	NO 2	.00	.00

ANALISIS FISICOS : RELACIONES IONICAS

ANALISIS FISICOS .		MELACIONES ION	CAS		
Conductividad a 25 °C (µS/cm)	704.	CI/Na	.94	Mg/Ca	1.42
Dureza calculada (ppm CaCO,)	169.12	CI/(Na+K)	.90	Na/Ca	2.73
pH	7.64	CI/SO.	10.85	Na/K	21.99
Residuo seco calc. (ppm)	502.86	(CO,+HCO,)/Ca	2.12	SO,/Ca	.24
Error analitico (5)	1.01	(CO,+HCO,)/(Ca+Mg)	.88	SO, /(Co+Mg)	.10

ANALISIS Nº

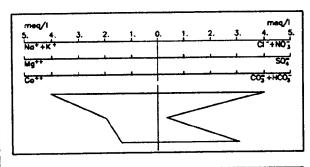
FECHA DE MUESTREO : 26-09-91

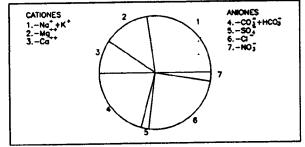
PETICIONARIO : GEO-AGUA, S.A.

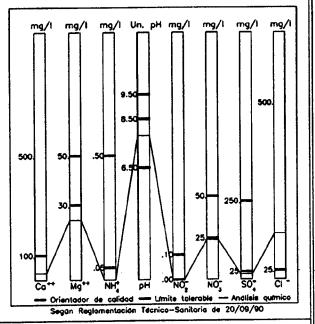
FECHA DE ANALISIS :

28-01-92

DENOMINACION: MUESTRA N.4. Final.


HOJA DE ANALISIS


RESULTADOS	ANALIT	ICOS:					
CATIONES		mg/l	meq/l	ANIONES		mg/i	meq/l
Litio	Li +	.00	.00	Sulfatos	SO ₇	16.00	.33
Sodio	Na *	89.00	3.87	Cloruros	CI ^I	128.00	3.61
Potasio	K+	6.70	.17	Carbonatos	CO -	.00	.00
Calcio	Ca**	28.00	1.40	Bicarbonatos	HCO3	188.00	3.08
Magnesio	Mg**	24.00	1.98	Nitratos	NO.	24.00	.39
Amonio	NH:	.00	.00	Nitritos	NO 2	.00	.00


ANALISIS FISICOS :

RELACIONES IONICAS

ANALISIS FISICOS.		INCLUNCTOTICS TOTAL	O, 10		
Conductividad a 25 °C (µS/cm)	709.	CI/Na	.93	Mg/Ca	1.42
Dureza calculada (ppm CaCO,)	169.12	CI/(Na+K)	.89	Na/Ca	2.77
Н	7.81	CI/SO.	10.85	Na/K	22.57
Residuo seco calc. (ppm)	506.43	(CO,+HCO,)/Ca	2.20	SO, /Ca	.24
Error analitico (5)	.18	(CO,+HCO,)/(Ca+Mg)	.91	SO, /(Ca+Mg)	.10

ANALISIS Nº

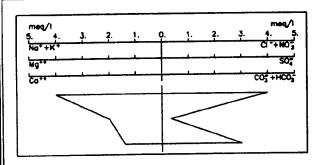
FECHA DE MUESTREO : 25-09-91

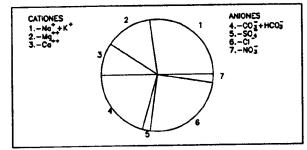
PETICIONARIO : GEO-AGUA, S.A.

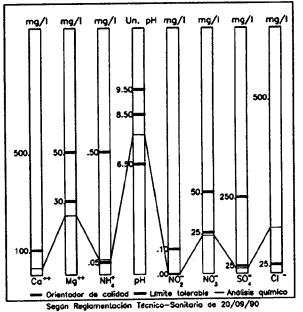
FECHA DE ANALISIS :

28-01-92

DENOMINACION: MUESTRA N.1. Hora de bombeo: 1h.42'


HOJA DE ANALISIS


S ANALII	ICOS:					
	mg/l	meq/I	ANIONES		mg/l	meq/l
Li+	.00	.00	Sulfatos	SO ₇	16.00	.33
Na +	88.00	3.83	Cloruros	CI -	128.00	3.61
K+	6.60	.17	Carbonatos	co ;	.00	.00
Ca++	28.00	1.40	Bicarbonatos	HCO3	184.00	3.02
Ma ⁺⁺	24.00	1.98	Nitratos	NO-	23.00	.37
NH‡	.06	.00	Nitritos	NO 2	.00	.00
	Li+ Na+ K+ Ca++ Mg++	Li + .00 Na + 88.00 K+ 6.60 Ca++ 28.00 Mg++ 24.00	mg/l meq/l Li+ .00 .00 Na+ 88.00 3.83 K+ 6.60 .17 Ca++ 28.00 1.40 Mg++ 24.00 1.98	mg/l meq/l ANIONES Li+ .00 .00 Sulfatos Na+ 88.00 3.83 Cloruros K+ 6.60 .17 Carbonatos Ca++ 28.00 1.40 Bicarbonatos Mg++ 24.00 1.98 Nitratos	mg/l meq/l ANIONES Li+ .00 .00 Sulfatos SO Na+ 88.00 3.83 Cloruros Cl K+ 6.60 .17 Carbonatos CO Ca++ 28.00 1.40 Bicarbonatos HCO Mg++ 24.00 1.98 Nitratos NO The second sec	mg/l meq/l ANIONES mg/l Li+ .00 .00 Sulfatos SO** 16.00 Na + 88.00 3.83 Cloruros Cl - 128.00 K+ 6.60 .17 Carbonatos CO *** .00 Ca++ 28.00 1.40 Bicarbonatos HCO *** 184.00 Mg*+ 24.00 1.98 Nitratos NO ** 23.00


ANIALICIC EICICOS

RELACIONES IONICAS

	KEDACIONES ION			
706.	CI/Na	.94	Mg/Ca	1.42
169.12	CI/(Na+K)	.90	Na/Ca	2.73
7.68	CI/SO,	10.85	Na/K	22.66
504.29	(CO,+HCO,)/Ca	2.16	SO ₄ /Co	.24
.71	(CO ₃ +HCO ₃)/(Co+Mg)	.89	SO ₄ /(Ca+Mg)	.10
	169.12 7.68 504.29	706. CI/Na 169.12 CI/(Na+K) 7.68 CI/SO ₄	169.12 CI/(Na+K) .90 7.68 CI/SO ₄ 10.85 504.29 (CO ₃ +HCO ₃)/Ca 2.16	706. CI/Na .94 Mg/Ca 169.12 CI/(Na+K) .90 Na/Ca 7.68 CI/SO ₄ 10.85 Na/K 504.29 (CO ₃ +HCO ₃)/Ca 2.16 SO ₄ /Ca

PLAN HIDROLOGICO DE GRAN CANARIA

4143 3032

TIPO DE OBRA

NOMBRE

Con sec

EXPEDIENTE 5917 TP

SITUACION Y COORDENADAS

Municipio

Sondeo

GRAN CANARIA

COORDENADAS U.T.M.

425, 780 X: Y: 3. 084. 000

Toponimo

12 MOGAN BCO. DE VENEGUERA

Z:

165

Hoja 1/25.000

Hoja 1/5.000 Ant.

107

Profundidad/longitud

179 m.

Hoja 1/5.000 Nue. OBSERVACIONES

PROFUNDIDAD SUMINISTRADA POR LA PROPIEDAD.

EL EXPEDIENTE CORRESPONDE A LA LEGALIZACION DE VARIOS SONDEOS,

ESTE CORRESPONDE AL EJECUTADO JUNTO AL POZO NO EXISTENTE 2422 TP

DEL NIVEL 1

DATOS ADMINISTRATIVOS

DATOS DE LA PROPIEDAD

Propietario AGRICOLA TABAIBAL

Direction TRIANA Nº120,PISO 7º. TLF:373544

Presidente Direccion

OBSERVACIONES

CARACTERISTICAS CONSTRUCTIVAS

Revestido Si

MOTOR

Si

potencia (C.V.) caudal (l/seg) Tipo

Diametro libre 0,30 m. Longitud del Revestimiento

6 m.

BOMBA

No Tiene

Sumergida

25 90

Calor Si

Gases No

Extractor No

Electrificado

DATOS DE EXPLOTACION

USO

Riego Si

Abasto No

Otros Usos No

CONSUMO

Uso Propio Si

Venta No

Horas diarias de bombeo 6,00 de 25 l/seg. cada hora. Dias al mes de bombeo 24, meses al año 12

OBSERVACIONES

PIEZOMETRIA

Fecha 05/09/90

Nivel

Profundidad del agua

Horas Bombeando

0.0

Altura de la aspiracion sobre el fondo

1,00 m.

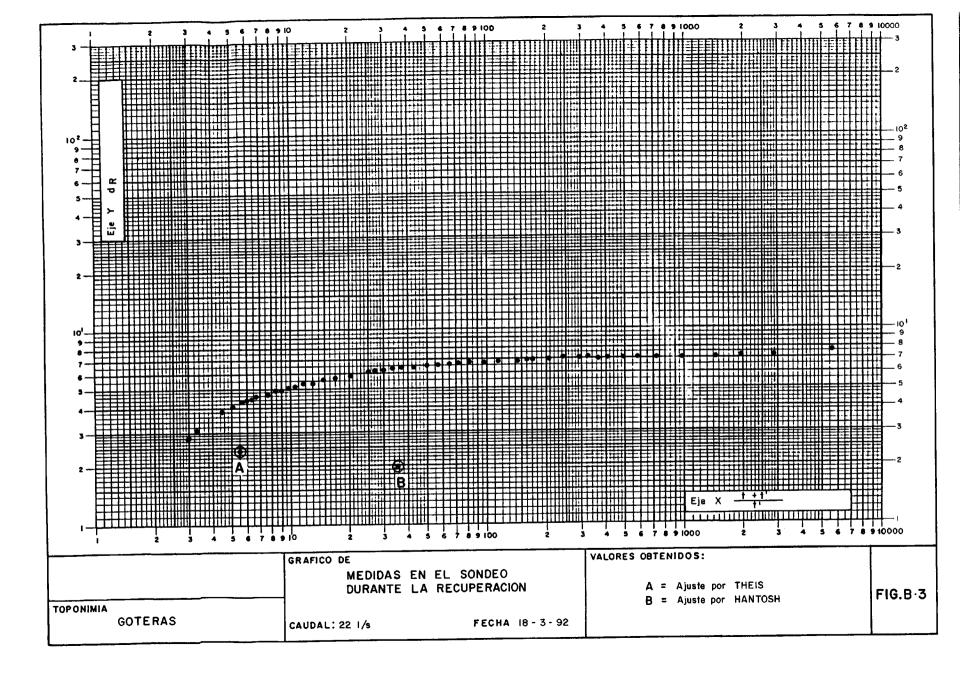
Horas Parado

0.0

OBSERVACIONES

NO SE PUDO MEDIR, POR NO TENER TUBERIA PARA PASAR LA SONDA.

			C	ARA	CTE	ERI	STICA	s co	NSTR	UC'	rivas	4	1 4:	3 3 0	0 3 7
DESCRIPCIO			······		<u> </u>	113		·····	••••••••	• • • • • •	·····	•••	• • • • • • • • • • • • • • • • • • • •		···• · · · · · · · · · · · · · · · · ·
LONGITUD (9		FECHA						
TIPO DE PER								2	ENTIDAD	OUE	CONTRATA	·	a		
CONTRATIST	A			• • • • • • •	· · · · · · · · · · · · · · · · · · ·		•••••		EJECUTA I	.A OB	RA		Parti	cular	
			<u></u>	7			MANA	NTI	AL _	_					
TIPO DE SU							AMIENTO			F	RECUENCIA	NDE:	LA SURGES	ÂIA	
OBSERVACIO	ones	* · • • · · · · · · · · · · · · · · · ·		,	•••••			•••••		····· •	• • • • • • • • • • • • • • • • • • • •	٠.			
							DD A 17								
		Р	ERFOR	ACIO:	<u> </u>		BRA V	EKT	ICAL						
TRAMO	Ran	DE	A		3		0.855000.5		0)E	A	REVI	S interior	TO Espesor	∿aturalez
	go	(m)	(m	1)	(mm)		OBSERVAC		(r	n)	(m)		(mm)	(mm)	and the control of th
0-01		0	1/7	9	3	00	Soude	,				T			
<u> Ц-Щ</u>			Ш		Ш	\square									*********
	ᆀᆣ		Ш												********
			Щ		Ш	\square			Ш						
					Щ	븨									
		 				븻			Ш						
						뷔	***** •	· · · .							
]- <u> </u>										쒸					
]- 													<u> </u>		*********
' -	1	· · · · · · · · · · · · · · · · · · ·				-1									
		7		OBR	RA H	ORI	ZONT	AL/I	NCLII	NAI)A				
TRAMO Ra	1 -	1	4 8 O		CITUD		ISTANCIA L ORIGEN (m)	ANCH	SECCIO O x ALTO (m)	NC	2 ³ (mm)	ł	- (%oo)	OBSERVACIC	nes
٦-٢-١،	_ _	7 -										-			
	7/7						114		7 [_ [• • • • • • • • • • • • • • • • • • • •
	5/7						<u> </u>		┙┖ ┍	_ [441		*********
							 • •)	- <u> </u>	<u> </u>			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
]-[]] [7					
]-[] [7/7				********	
]-[] [• • • • • • • • • • • • • • • • • • • •
<u> </u>										ع اد		\Box		•	• • • • • • • • • • • • • • • • • • • •
J-LT-)				П											
]-[[]				<u> </u>											
J-LL-) _	: =		 	++		\perp] [
j-iii i				++	ᄴ	4	┸┸┻┤╿	\perp		킨			\square		
				++		뉴	<u></u> ,	-			Щ				
]				TT		+		<u> </u>		╢ <u>누</u>		<u> </u>		····	
1										누				• • • • • • • • • • • • • • • • • • • •	
enterior of a source particular	Tables Services	TOTAL PROPERTY.	AND LESS OF THE PARTY OF THE PA	*			CONTRACTOR OF THE PERSON OF TH				╙┸┸┛╽	_			[


· 7 70		IDENTIDAD	
Instituto Tecnológico GeoMinero de España ARCHIVO DE PUNTOS ACUIFEROS	NATURALEZA FOUR CO	EXPTE / SIGLAS M DE REGISTRO TOPONIMIA	4 1 4 3 3 0 0 3 2
CANARIAS	SITUACI	ON	
COORDENADAS GEOGRAFIC	COORDENADAS U	.т.м.	COTA 165 PRICEN DE LA COTA Mapa 1:25.000 1 1 25.000
LAT.TI.D	2 8 R 3 0 8	4000	Soudeo
CROQUIS DE SITUACIO	Puebla de NOAIBRE MO.	4 1 4 3 W	PROVINCIA LAS PALMAS
Pourte, les ja	NUMERO - ····	5.000	EL GAR Boonds Veneguera
The state of the s	SISTEMA ACUIFERO	gan Cavaria	
EXPLO'	TACION		USUARIO
SOMENCIA IN CORP.	Motor electrico bember 50 m de prefundidael 8	PRESIDENTE Co- DIRECCION OF THE CPN POBLACION TELEFLONO DIRECCION . Pur CPN POBLACION TELEFLONO 128-3 DIMECCION FACUL DIMECCION FACUL LOS ALION	gricola Tabai bal Tala Cauarias S.A. ana Nº120 Pire 7' Ins Palmas de G.C. 9283 73549 Palacl Guares Valerai Table de Veneguera (Bar) 569320 928569324
otros equiposEq.	nipo de bambeo	TELEFONO	<u> </u>
PERIMETRO DE PROTECCION DOCUMENTOS INTERCALADOS			CE EL PUNTO

ANEJO V-1 Fichas Durante la ejecución del ensayo se han tomado muestras de agua:

- a las 24 h del inicio del bombeo
- a las 48 h del inicio del bombeo

Una vez realizados los análisis, que se incluyen en las fichas correspondientes (Anejo V.3), no se ha detectado variación en la calidad durante la ejecución del ensayo.

Los ensayos de bombeo han podido interpretarse, como hemos visto, para una serie de condiciones como consecuencia de las incidencias ocurridas y del mejor ajuste posible.

Con estos valores obtenemos:

$$Q = 22, 19 l/s T = 0, 183 \frac{Q}{\Delta_{10}} = 0, 183 \frac{22, 19 \times 86, 4}{8, 3} = 42, 3 m^2 / d$$

$$S = \frac{2,25 \, T \, t_o}{r^2} = \frac{2,25 \cdot 42,3 \cdot 38}{84.64 \cdot 1440} = 2,9 \, x \, 10^{-2}$$

Medidas en el sondeo durante la recuperación. Ajuste por Jacob

Representando los valores obtenidos en la recuperación (Fig. B.2.) es posible ajustar en los primeros tiempos de la recuperación una recta con Δ_{10} = 4,1.

$$T = 0,183 \frac{Q}{\Delta_{10}} = 0,183 \frac{22,19 \times 86,4}{4,1} = 85,6 \, m^2/d$$

Medidas en el sondeo durante la recuperación. Ajuste por Theis

Representando en papel bilogarítmico (Fig. B.3.) se pueden ajustar los valores iniciales del bombeo obteniendo los valores de ajuste siguientes: (PUNTO A)

$$W\left(u\right) =1\qquad \qquad d=2,4$$

$$1/u = 10$$
 $t = 5.5 \,\mathrm{m}$

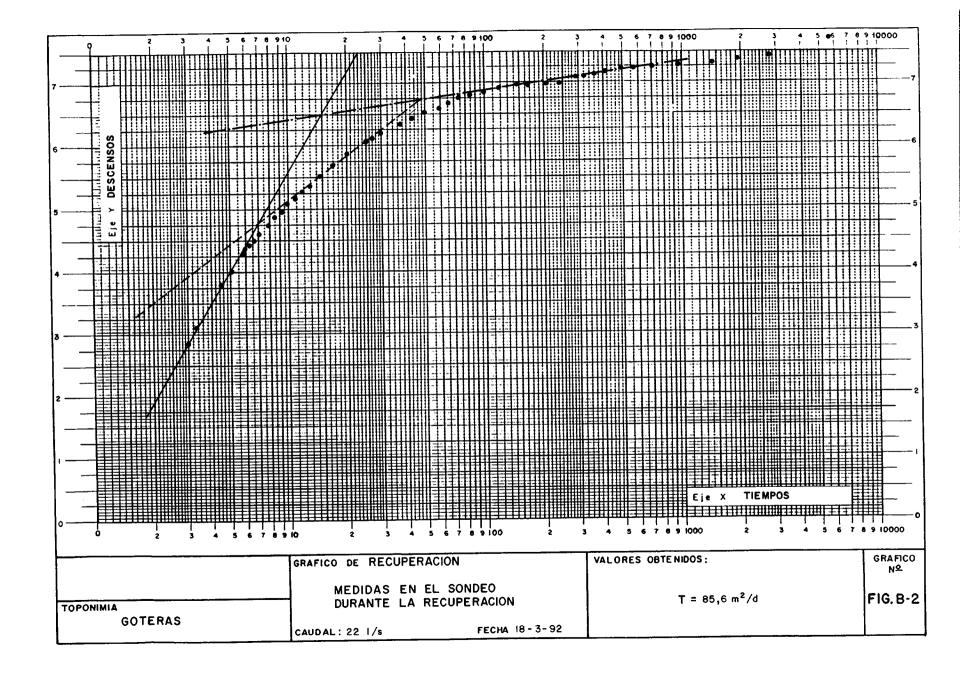
Aplicando las fórmulas tendremos:

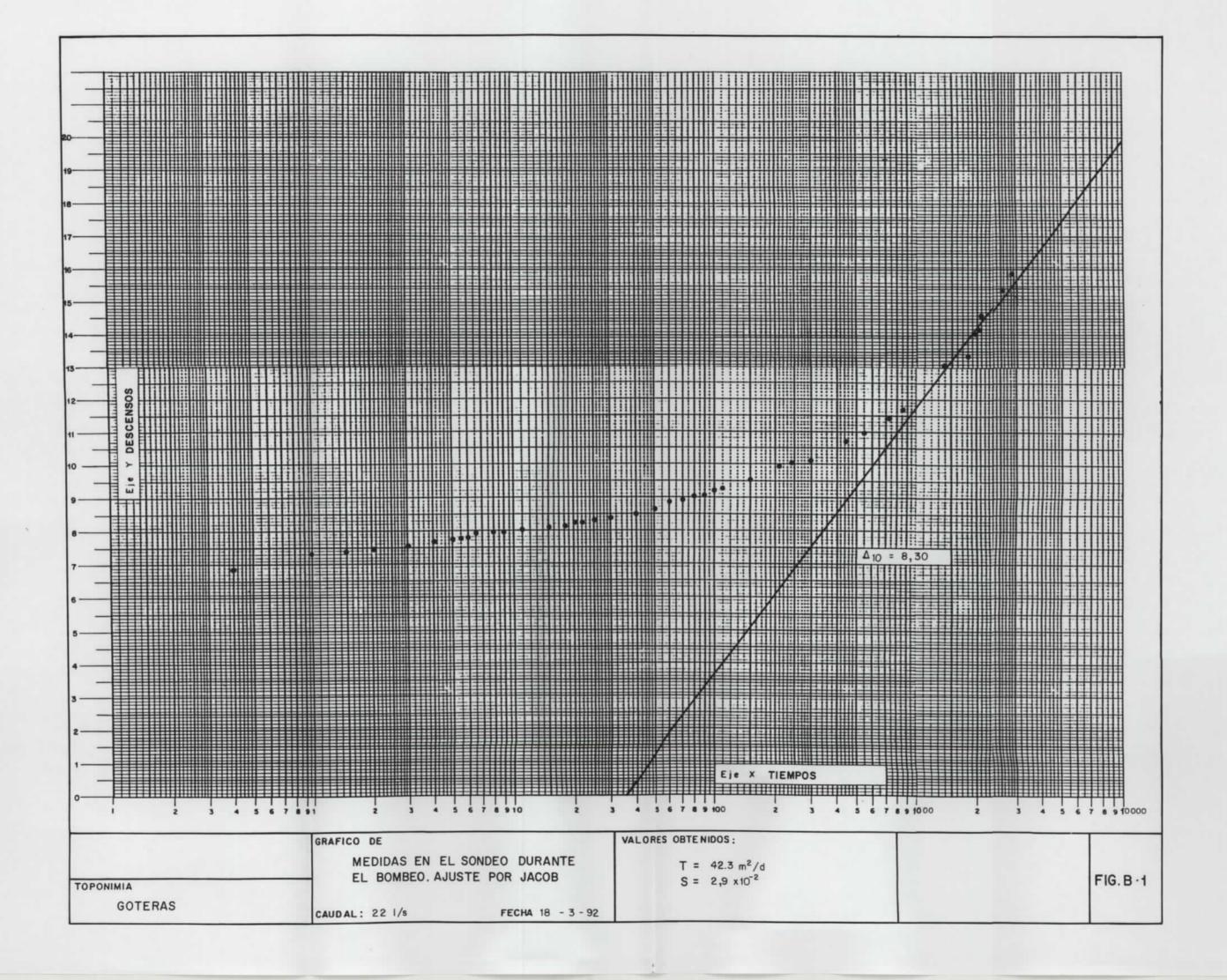
$$T = \frac{Q \cdot W(u)}{4 \pi d} = \frac{1900 \cdot 1}{4 \cdot \pi \cdot 2.4} = 63,03 \, m^2/d$$

$$S = \frac{4 T t}{r^2 (1/u)} = \frac{4.63,03.5,5}{84,64.10.1440} = 1,14 \times 10^{-3}$$

Medidas en el sondeo durante la recuperación. Ajuste por Hantush

Teniendo en cuenta la forma de la curva y la posibilidad de que el acuífero sea semiconfinado se ha intentado la interpretación por el método de Hantush.


Se obtienen los valores de ajuste siguientes: (Fig. B.3. PUNTO B)


$$W(u) = 1$$
 $d = 0.9$ $1/u = 100$

$$1/u = 10$$
 $t = 3$ m $B = \frac{r}{r/8} = \frac{9.5}{9.2} = 47.5$

$$T = \frac{Q \cdot W(u)}{4 \pi d} = \frac{1900 \cdot 1}{4 \cdot \pi \cdot 2} = 75,6m^2/d$$

$$S = \frac{4Tt}{r^2(1/u)} = \frac{4.75, 6.36}{84,64.100.1440} = 8,93 \times 10^{-4}$$

Los valores obtenidos por ambos métodos son similares y su orden de magnitud aceptable para el tipo de acuífero considerado aunque difícilmente extrapolable.

Durante la ejecución del ensayo de bombeo se han tomado tres muestras de agua:

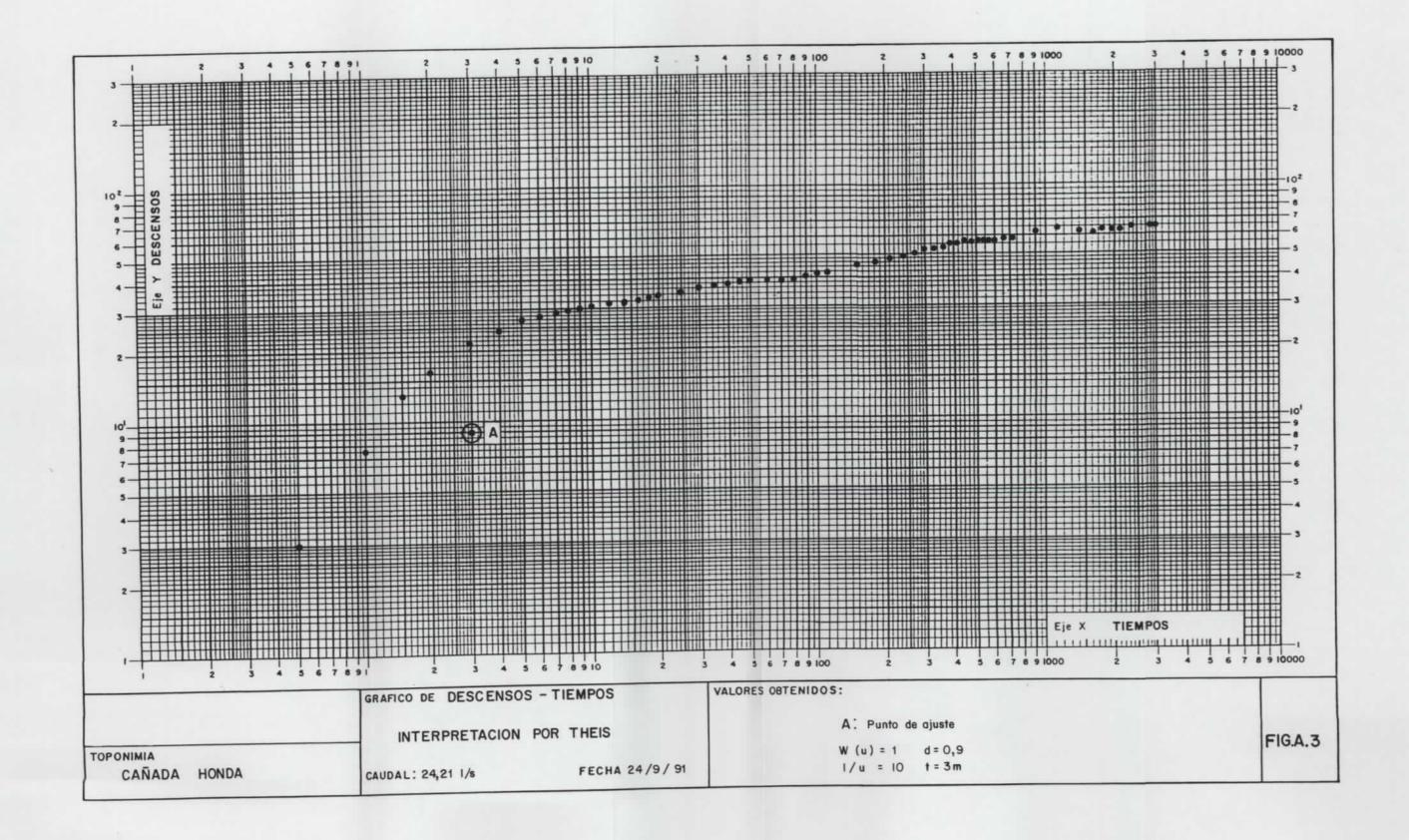
- Al cabo de 1 h 42' de bombeo
- Unos minutos antes de finalizar el bombeo
- Después de la recuperación

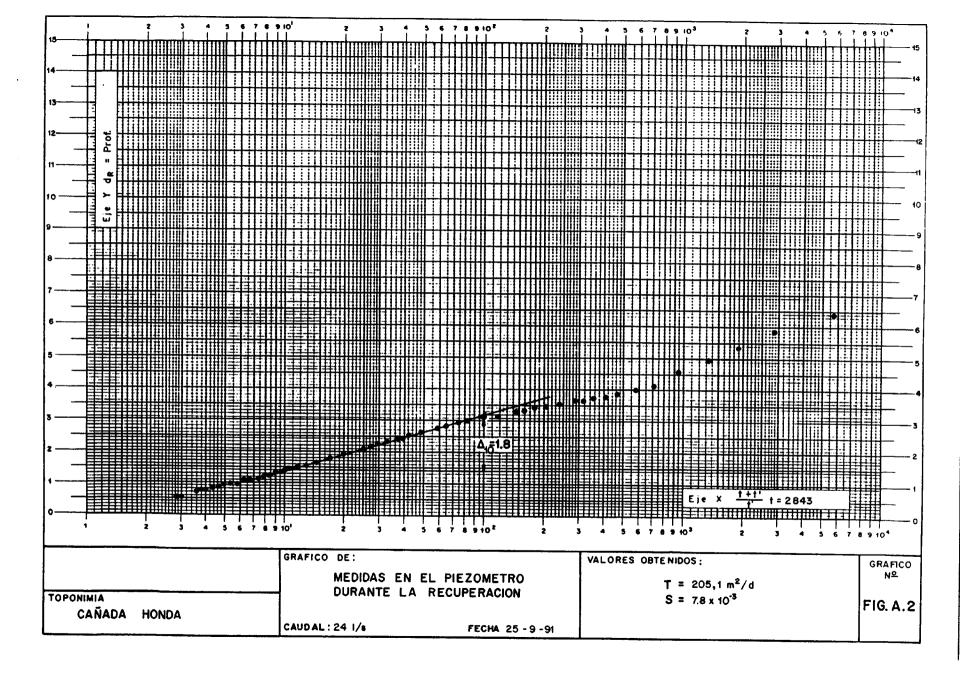
Una vez realizados los análisis, que se incluyen en las fichas correspondientes (Anejo V.1), no se ha detectado ninguna variación significativa de la calidad del agua aforada poniendo del manifiesto la uniforme calidad del agua del acuífero explotado.

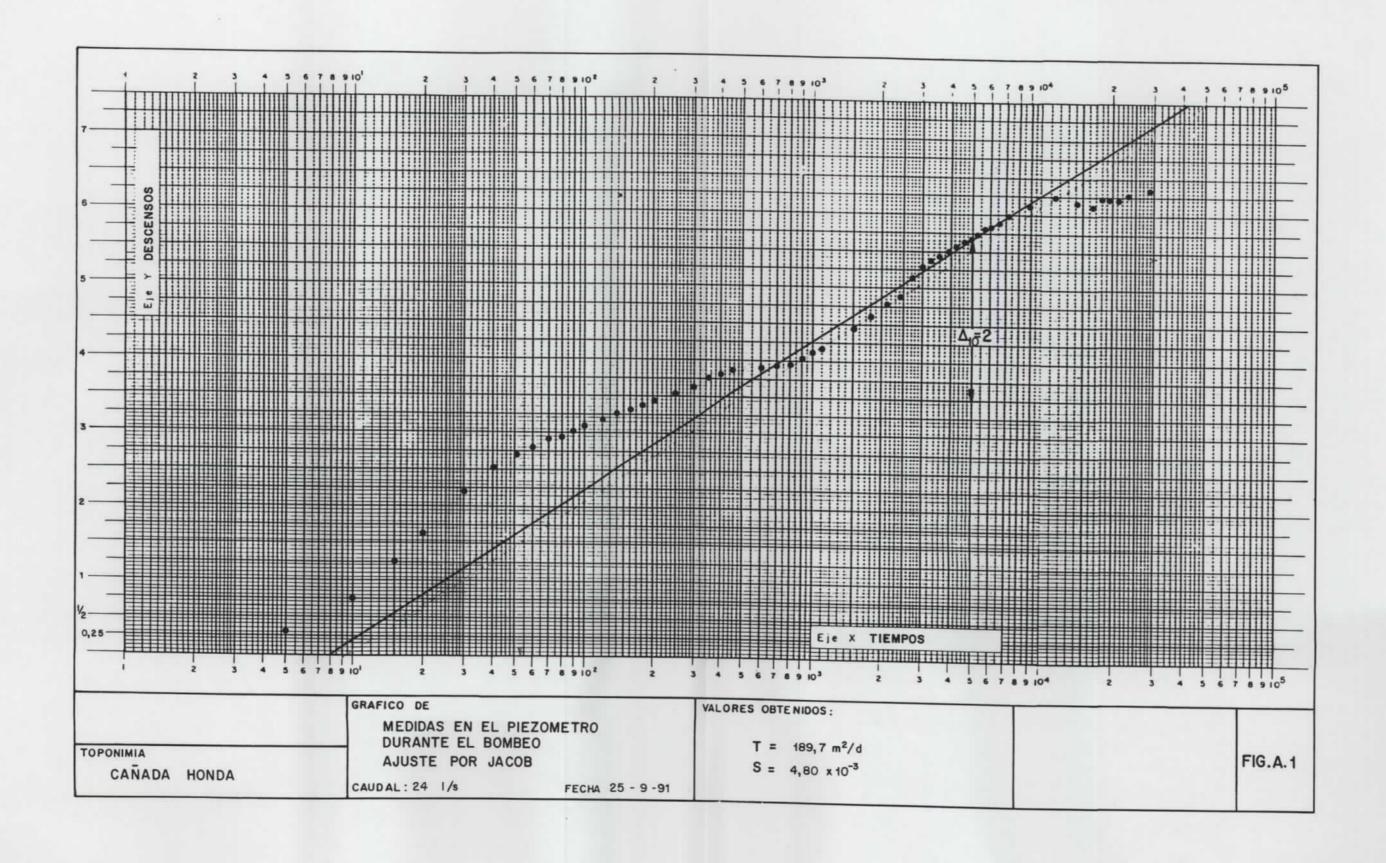
B. Ensayo en Sondeo Goteras

Las fichas correspondientes al sondeo y piezómetro figuran en el Anejo V.3 y las características del ensayo fueron las siguientes:

- Duración: 48 h
- Caudal constante: 22 Vs ± 2,5 Vs
- Medidas en el sondeo
- Medidas en el piezómetro
- Distancia piezómetro pozo bombeo: 9,5 m
- Equipo bombeo: bomba sumergida
- Medida de caudal caudalímetro


Las medidas realizadas durante la ejecución del ensayo figuran en el Anejo V.4.


Hay que tener en cuenta que el piezómetro consiste en un pozo excavado de 3 m de diámetro con una galería entre 25 y 30 m de longitud, de 2 m de altura y 1,25 m de anchura, a medio metro del fono, a 74 m de la referencia nival.


Tras 24 h de recuperación el piezómetro no llegó a recuperar el nivel del fondo lodoso situado a 73,95 m de la referencia nivel.

Medidas en el sondeo durante el bombeo. Ajuste por Jacob

Representando en papel semilogarítmico (Fig. B.1.) es posible ajustar para los puntos finales del ensayo la recta cuya pendiente es Δ_{10} = 8,3, el punto de corte en el eje de los tiempos t_o = 38 m.

Medidas en el plezómetro durante el bombeo. Ajuste por Jacob

Representando en papel semilogarítmico (Fig. A.1.) es posible ajustar para los puntos finales del ensayo la recta señalada cuya pendientes Δ_{10} = 2, el punto de corte en el eje de los tiempos t_0 = 0,8 m.

Con estos valores obtenemos con $Q = 24 \text{ Vs} \approx 2.073,6 \text{ m}^3/\text{d}$.

$$T = 0,183 \frac{Q}{A_{(10)}} = 0,183 \frac{2.073,6}{2} = 189,7 \, m^2/d$$

$$S = \frac{2,25 \, T. \, t_o}{r^2} = \frac{2,25 \cdot 189,7 \cdot 0.8}{49 \cdot 1.440} = 4,8 \, x \cdot 10^{-3}$$

Medidas en el plezómetro durante la recuperación. Ajuste por Jacob

Representando los valores obtenidos en la recuperación (Fig. A.2.) es posible ajustar en los primeros tiempos de la recuperación una recta con Δ_{10} = 1,85.

Con dicho ajuste y tomando como caudal los 24 l/s del bombeo se puede escribir:

$$T = 0,183 \frac{Q}{\Delta_{(10)}} = 0,183 \frac{2.073,6}{1,85} = 205,1 \, m^2/d$$

Teniendo en cuenta que esta línea de ajuste corta al eje de los t iempos en t, = 1,2 s.

$$S = \frac{2,25 T t_o}{r^2} = \frac{2,25 \cdot 205,1 \cdot 1,2}{49 \cdot 1440} = 7,8 \times 10^{-3}$$

Los valores obtenidos de T y S son equivalentes a los obtenidos por otros métodos.

Medidas en el plezómetro durante la recuperación. Ajuste por Theis

Representando en papel logarítmico (Fig. A.3.) se puede ajustar el tramo señalado obteniendo los valores de ajuste siguientes:

$$W\left(u\right)=1 \qquad d=0.9$$

$$1/u = 10 t = 3 \text{ m}$$

Aplicando las fórmulas tendremos:

$$T = \frac{Q \cdot W(u)}{4 \pi d} = \frac{2073, 6 \cdot 1}{4 \cdot 3, 14 \cdot 0, 9} = 183, 4m^2/d.$$

$$S = \frac{4 T t}{r^2 (1/u)} = \frac{4.183, 4.3}{49.10.1440} = 3,1 \times 10^{-3}$$

ENSAYOS DE BOMBEO

Para la interpretación de los resultados existen numerosas dificultades que permitan determinar un método correcto de interpretación; puede ser un acuífero libre, semiconfinado o mixto, el pozo y el piezómetro son incompletos, el regimen no permanente, pueden producirse problemas de drenaje diferido, agotamiento de niveles, etc., y el caudal ha sufrido algunas oscilaciones al principio y final del ensayo.

Sin embargo con objeto de obtener unos órdenes de magnitud de los parámetros T y S se ha optado por interpretar los resultados por Jacob y Theis tratando de ajustar en ambos casos los valores finales del ensayo en el bombeo y los valores iniciales en la recuperación.

En estas condiciones los valores que mejor se han ajustado son:

Ensayo de Cañada Honda:

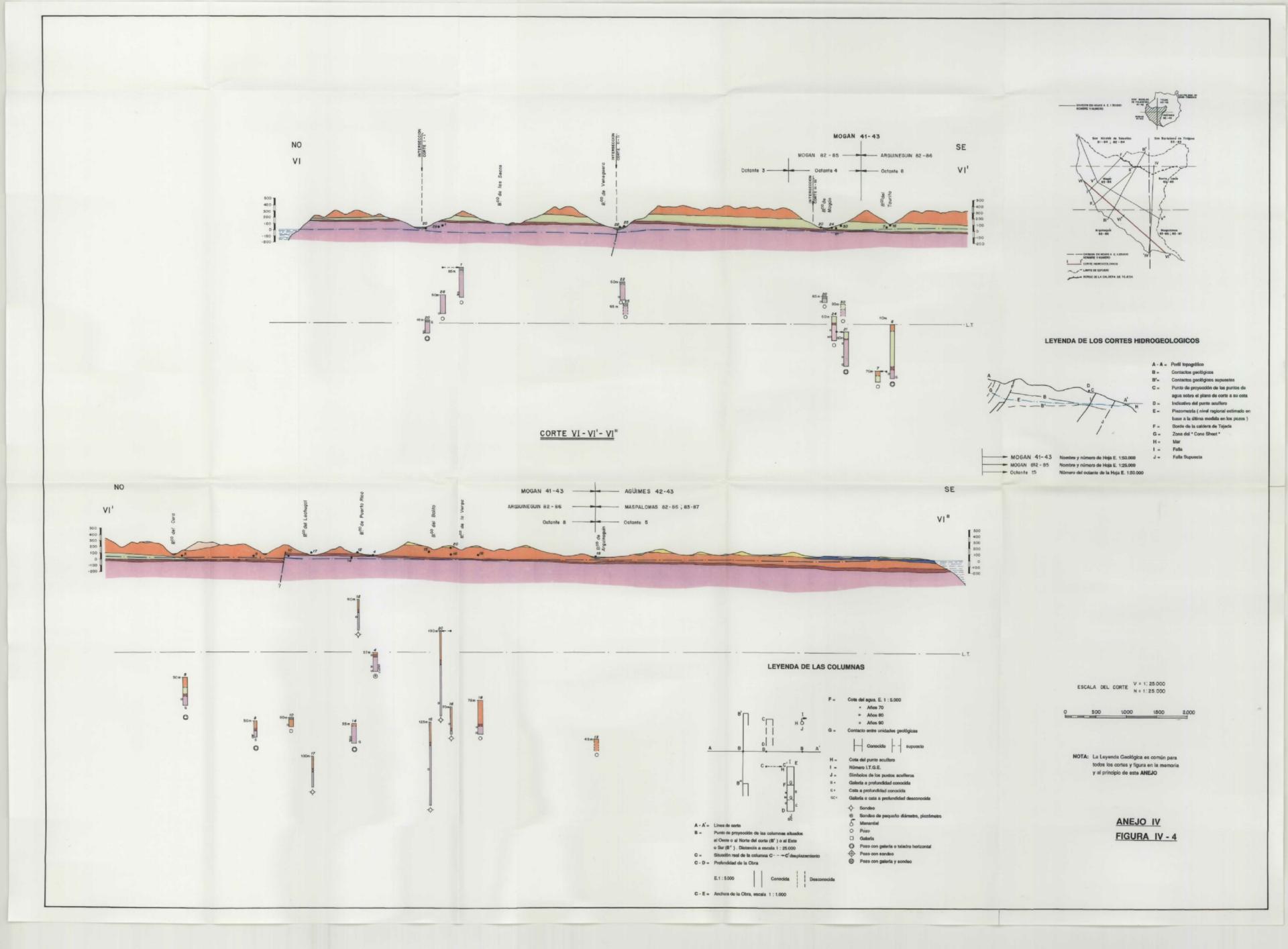
- Medidas en el piezómetro durante el bombeo
- Medidas en el piezómetro durante la recuperación

Ensayo de Goteras:

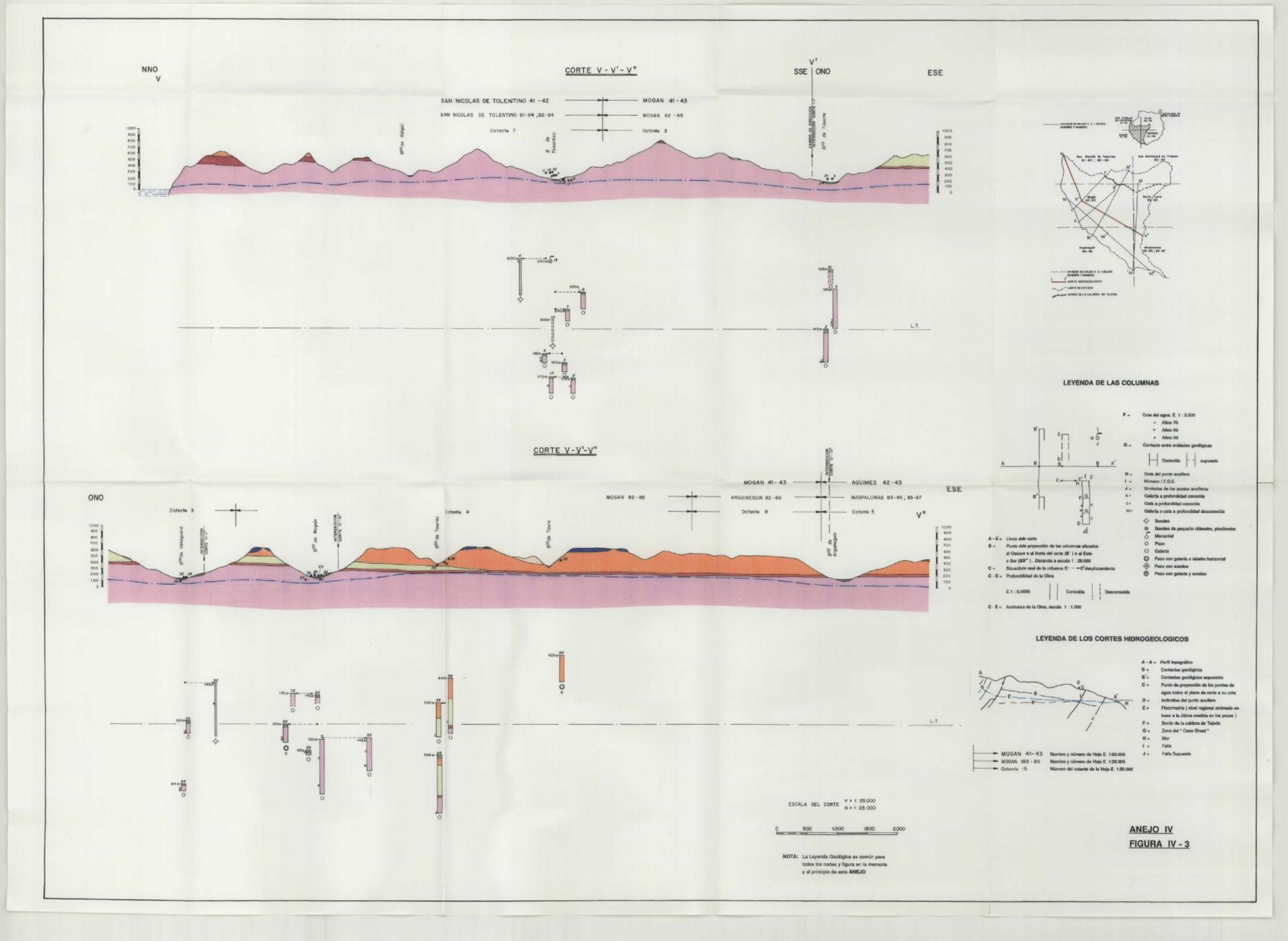
- Medidas en el sondeo durante el bombeo
- Medidas en el sondeo durante la recuperación

A. Ensayo en Sondeo Cañada Honda

El primer ensayo se realizó en Cañada Honda y estaba inicialmente planteado en un sondeo con un piezómetro próximo. En las primeras medidas se enganchó la sonda que medía niveles en el pozo y en consecuencia sólo se dispone de las medidas en el piezómetro.

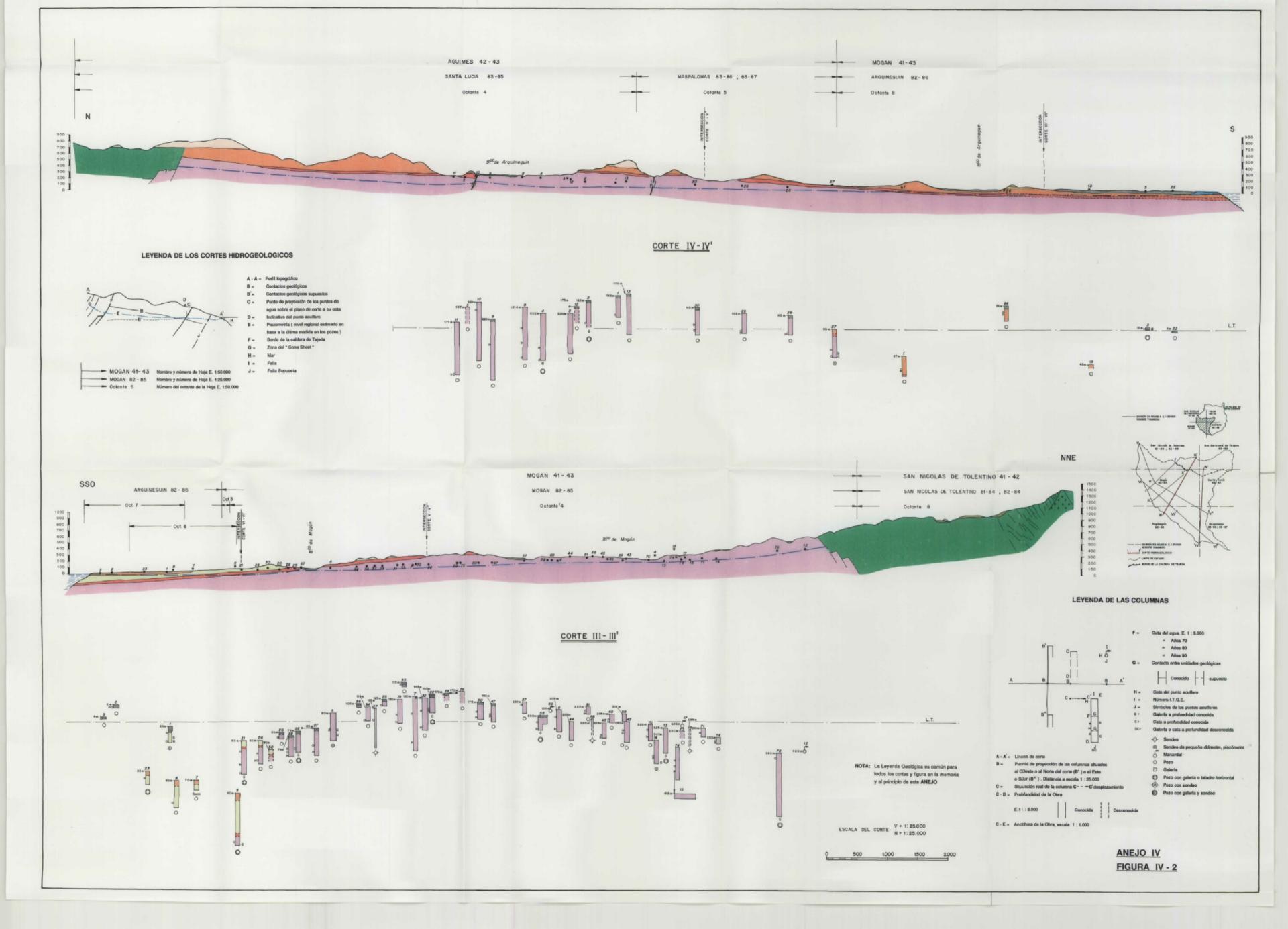

Las fichas correspondientes al sondeo y piezómetro figuran en el Anejo V.1. y las características del ensayo fueron las siguientes:

- Duración: 48 h
- Caudal constante: 24 Vs ± 5 Vs
- Medidas en el piezómetro
- Distancia piezómetro pozo bombeo: 7 m
- Equipo bombeo: bomba sumergida, 90 c.v. a 150 m
- Medida del caudal caudalímetro

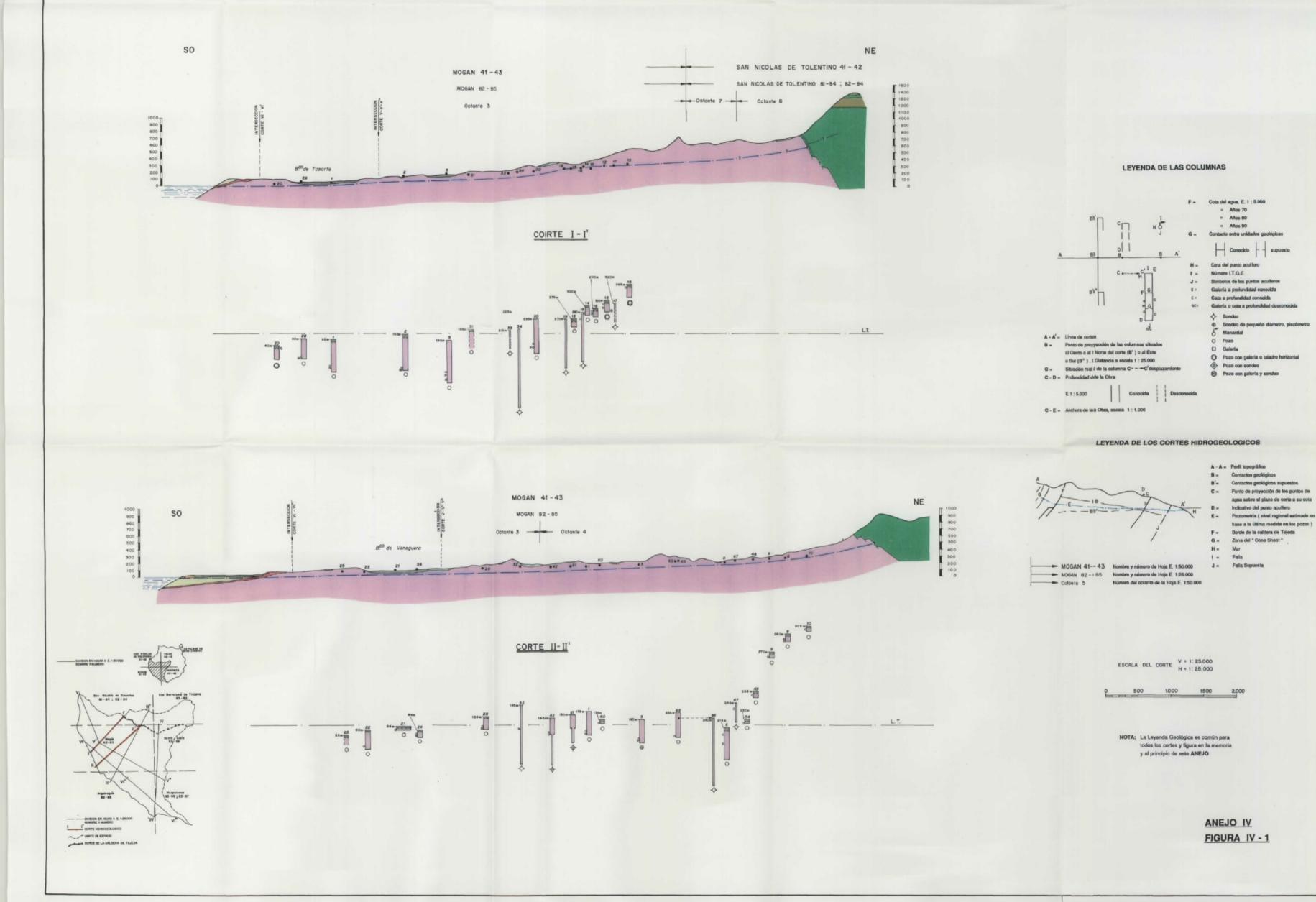

Las medidas realizadas durante la ejecución del ensayo figuran en el Anejo V.2

ANEJO V

Ensayos de bombeo



ANEJO IV-4
Corte VI-VI'. Perimetral Sur



ANEJO IV-3

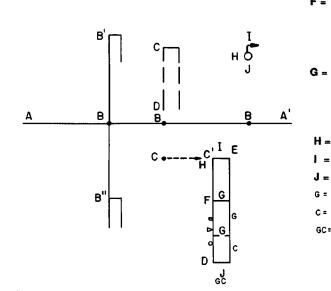
Corte V-V'. Perimetral Norte

ANEJO IV-2 Corte III-III'. Barranco de Mogán Corte IV-IV'. Barranco de Arguineguín

ANEJO IV-1

Corte I-l'. Barranco de Tasarte

Corte II-II'. Barranco de Veneguera

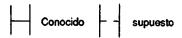

LEYENDA GEOLOGICA

EDAD	Nº CART.	Fm.		LITOLOGIAS	PERMEABILIDAD
HOLOC.	1	ente	17	Depósitos de barranco, eólicos y playas	Alta por porosidad intergranular
유	16	-Reciente	16)	Depósitos de ladera, deslizamientos y suelos	Media-alta por porosidad intergranular
	15	FDP	15	Conglomerados y arenas	Media-alta por porosidad intergranular
ON ON	14)		14)	Pitones y coladas fonolíticas R. N.	Impermeable
PLIOCENO	13	Nublo -	13)	Brecha Volcánica R.N. en facies deslizadas y facies central	Baja por cementación
	(2)	Roque -	12	Brecha Volcánica R.N.	Baja por cementación
	(1)	Ī	(1)	Coladas y piroclastos basálticos R.N.	Media por disyunción y lavas escoriáceas
		-100	OINIMO	DINTRACALDERA	
MEDIO	10	Sálica	10	Ignimbritas y coladas fonolíticas	Media-baja por disyunción y lavas escoriáceas
MIOO	89	Sá	8	Tobas, ignimbritas y coladas riolítico- traquíticas con 9 Domos fonolíticos	Baja
		DO	OININC	DEXTRACALDERA	
IOR	7	FD.P	7	Gravas, conglomerados y arenas	Media-alta por porosidad intergranular
SUPERIOR	6		6	Lavas e intrusiones fonolíticas	Media en los niveles escoriáceos
	5	Sálica –	5	Ignimbritas (riolítico-traquíticas o fonolíticas), coladas piroclásticas, tobas y coladas peralcalinas	Baja
HOCENO	4		4	Lavas Riolítico-traquíticas. Tobas intercaladas	Media. Niveles escoriáceos y disyunción columnar
MEDIO	3	1	3	Tobas Vitrofídicas riolítico-traquíticas y traquibasálticas	Impermeable
N	2	-B. A.	2	Lavas y piroclastos, basálticos y traquibasálticos	Baja. Niveles escoriáceos alterados
Ш	117		1	DIQUES	Baja

SIGNOS CONVENCIONALES

* METAL CONTRO	Borde de la Caldera de Tejeda. Zona de alteración hidrotermal
	Contacto entre Unidades Geológicas
	Falla Normal
	Falla Supuesta
	Barda da la Zana da Estudia

LEYENDA DE LAS COLUMNAS


- A · A' = Línea de corte
- B = Punto de proyección de las columnas situados al Oeste o al Norte del corte (B') o al Este o Sur (B"). Distancia a escala 1:25.000
- C = Situación real de la columna C---C'desplazamiento
- C D = Profundidad de la Obra

E.1:5.000 Conocida Desconocid

C - E = Anchura de la Obra, escala 1:1.000

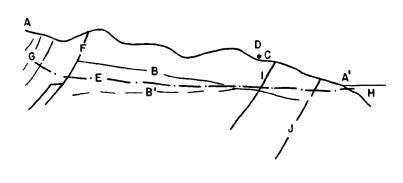
- = Cota del agua. E. 1 : 5.000
 - Años 70
 - > Años 80
 - o Años 90

Contacto entre unidades geológicas

Cota del punto acuífero

Número I.T.G.E.

Símbolos de los puntos acuíferos


Galería a profundidad conocida

Cata a profundidad conocida

Galería o cata a profundidad desconocida

- -⇔ Sondeo
- Sondeo de pequeño diámetro, piezómetro
- 5 Manantial
- O Pozo
- ☐ Galería
- Pozo con galería o taladro horizontal
- O- Pozo con sondeo
- Pozo con galería y sondeo

LEYENDA DE LOS CORTES HIDROGEOLOGICOS

MOGAN 41-43

MOGAN 82-85 Octante 5 Nombre y número de Hoja E. 1:50.000 Nombre y número de Hoja E. 1:25.000

Número del octante de la Hoja E. 1:50.000

A - A = Perfil topográfico

B = Contactos geológicos

B = Contactos geológicos supuestos

C = Punto de proyección de los puntos de agua sobre el plano de corte a su cota

D = Indicativo del punto acuífero

E = Piezometría (nivel regional estimado en base a la última medida en los pozos)

F = Borde de la caldera de Tejeda

G = Zona del " Cone Sheet "

H = Mar

l = Falla

J = Falla Supuesta

ANEJO IV Cortes hidrogeológicos

ESTACION - 204

AÑO	ост	NOV	DIC	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGOS	SEPT	TOTAL
1979 - 80	0.0	0.0	70.0	42.5	0.0	5.3	3.8	0.0	0.0	0.0	0.0	0.0	51.6
1980 - 81	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1981 - 82	0.5	5.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.7
1982 - 83	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1983 - 84	0.0	67.1	3.7	0.0	0.0	27.7	0.0	0.0	0.0	0.0	0.0	0.0	98.5
1984 - 85	0.0	0.0	0.0	82.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	82.4
198586	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1986 - 87	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1987 - 88	0.0	0.0	0.4	0.0	29.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	29.5
1988 - 89	0.0	23.5	0.0	0.0	84.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	107.7
1989 - 90	0.0	64.4	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	64.9
TOTAL LLUVIA UTIL	0.5	160.2	4.6	124.9	113.3	33.0	3.8	0.0	0.0	0.0	0.0	0.0	440.3
MEDIA LLUVIA UTIL	0.0	14.6	0.4	11.4	10.3	3.0	0,3	0.0	0.0	0.0	0.0	0.0	40.0
HIPOTESIS												_	
ESCORR. 80%	0.0	11.7	0.3	9.1	8.2	2.4	0.3	0.0	0.0	0.0	0.0	0.0	32.0
INFIL. 20%	0.0	2.9	0.1	2.3	2.1	0.6	0.1	0.0	0.0	0.0	0.0	0.0	8.0

ESTACION - 160

ARO	ОСТ	NOV	DIC	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGOS	SEPT	TOTAL
1979 - 80	5.1	0.0	0.0	64,5	0.0	36.1	30.2	0.0	0.0	0.0	0.0	0.0	135.9
1980 - 81	0.0	0.0	0.0	0.0	26.0	0.0	7.5	0.0	0.0	0.0	0.0	0.0	33.5
1981 - 82	26.5	13.4	2.4	0.0	93.1	0.0	19.1	0.0	0.0	0.0	0.0	0.0	154.5
1982 - 83	0.0	78.3	0.0	0.0	21.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0
1983 - 84	0.0	146.6	3.0	0.0	0.0	78.0	0.0	0.0	0.0	0.0	0.0	0.0	227.6
1984 - 85	0.0	0.0	0.0	127.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	127.9
1985 - 86	0.0	0.0	29.1	0.0	4.5	12.7	13.3	0.0	0.0	0.0	0.0	0.0	59.6
1986 - 87	0.0	0.0	0.0	24.6	0.0	22.5	0.0	0.0	0.0	0.0	0.0	0.0	47.1
1987 - 88	21.0	40.0	55.0	0.0	63.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	179.9
1988 - 89	0.0	226.0	10.0	20.0	86.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	342.0
1989 - 90	34.0	196.7	45.0	0.0	0.0	15.5	0.0	0.0	0.0	0.0	0.0	0.0	291.2
TOTAL LLUVIA UTIL	86.6	701.0	144.5	237.0	295.2	164.8	70.1	0.0	0.0	0.0	0.0	0.0	1699.2
MEDIA LLUVIA UTIL	7.9	63.7	13.1	21.5	26.8	15.0	6.4	0.0	0.0	0.0	0.0	0.0	154.
HIPOTESIS													
ESCORR. 80%	6.3	51.0	10.5	17.2	21.5	12.0	5.1	0.0	0.0	0.0	0.0	0.0	123.0
INFIL. 20%	1.6	12.7	2.6	4.3	5.4	3.0	1.3	0.0	0.0	0.0	0.0	0.0	30.

ESTACION - 130

AÑO	ост	NOV	DIC	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO8	SEPT	TOTAL
1979 - 80	0.0	0.0	0.0	25.3	0.0	1.2	0.0	0.0	0.0	0.0	0.0	0.0	26.5
1980 - 81	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1981 - 82	0.0	0.0	0.0	0.0	49.1	0.0	22.0	0.0	0.0	0.0	0.0	0.0	71.1
1982 - 83	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1983 - 84	0.0	26.0	0.0	0.0	0.0	29.3	0.0	0.0	0.0	0.0	0.0	0.0	55.3
1984 - 85	0.0	0.0	0.0	19.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	19.8
1985 - 86	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1986 - 87	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1987 - 88	0.5	0.0	3.0	0.0	28.8	5.3	0.0	0.0	0.0	0.0	0.0	0.0	37.6
1988 - 89	0.0	36.4	0.0	0.0	49.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	86.0
1989 - 90	5.9	46.4	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	52.5
TOTAL LLUVIA UTIL	6.4	108.8	3.0	45.1	127.5	36.0	22.0	0.0	0.0	0.0	0.0	0.0	348.6
MEDIA LLUVIA UTIL	0.6	9.9	0.3	4.1	11.6	3.3	2.0	0.0	0.0	0.0	0.0	0.0	31.7
HIPOTESIS													
ESCORR. 80%	0.5	7.9	0.2	3.3	9.3	2.6	1.6	0.0	0.0	0.0	0.0	0.0	25.4
INFIL 20%	0.1	2.0	0.1	8.0	2.3	0.7	0.4	0.0	0.0	0.0	0.0	0.0	6.3

ESTACION - 097

AÑO	OCT	NOV	DIC	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGOS	SEPT	TOTAL
1979 - 80	0.0	0.0	0.0	28.8	0.0	3.5	0.0	0.0	0.0	0.0	0.0	0.	32.3
1980 - 81	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1981 - 82	0.0	0.0	0.0	0.0	8.3	3.5	0.0	0.0	0.0	0.0	0.0	0.0	11.8
1982 - 83	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1983 - 84	0.0	21.5	11.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.0
1984 - 85	0.0	0.0	36.8	4.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	41.7
1985 - 86	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1986 - 87	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1987 - 88	0.0	0.0	14.0	0.0	7.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	21.5
1988 - 89	0.0	3.1	0.0	0.0	54.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	57.8
1989 - 90	0.0	33.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.0
TOTAL LLUVIA UTIL	0.0	57.6	62.3	33.7	70.5	7.0	0.0	0.0	0.0	0.0	0.0	0.0	231.1
MEDIA LLUVIA UTIL	0.0	5.2	5.7	3.1	6.4	0.6	0.0	0.0	0.0	0.0	0.0	0.0	21.0
HIPOTESIS													
ESCORR. 80%	0.0	4.2	4.5	2.5	5.1	0.5	0.0	0.0	0.0	0.0	0.0	0.0	16.8
INFIL. 20%	0.0	1.0	1.1	0.6	1.3	0.1	0.0	0.0	0.0	0.0	0.0	0.0	4.2

ESTACION - 093

AÑO	ОСТ	NOV	DIC	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGOS	SEPT	TOTAL
1979 - 80	0.0	0.0	0.0	58.5	0.0	33.9	0.0	0.0	0.0	0.0	0.0	0.0	92.4
1980 - 81	0.0	0.0	0.0	0.0	5.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.1
1981 - 82	10.2	0.0	0.0	0.3	0.0	42.4	8.8	0.0	0.0	0.0	0.0	0.0	61.7
1982 - 83	0.0	3.3	0.0	0.0	8.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	11.4
1983 - 84	0.0	94.5	10.4	1.5	0.0	53.4	0.0	0.0	0.0	0.0	0.0	0.0	159.8
1984 - 85	0.0	0.0	135.5	59.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	195.3
1985 - 86	0.0	0.0	15.8	0.0	2.5	23.0	26.0	0.0	0.0	0.0	0.0	0.0	67.3
1986 - 87	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1987 - 88	0.0	33.2	71.1	0.0	51.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	155.6
1988 - 89	0.0	99.0	3.3	8.5	82.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	193.2
1989 - 90	0.0	104.1	18.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	122.4
TOTAL LLUVIA UTIL	10.2	334.1	254.4	128.6	149.4	152.7	34.8	0.0	0.0	0.0	0.0	0.0	1064.2
MEDIA LLUVIA UTIL	0.9	30.4	23.1	11.7	13.6	13.9	3.2	0.0	0.0	0.0	0.0	0.0	96.7
HIPOTESIS								· ·					
ESCORR. 80%	0.7	24.3	18.5	9.4	10.9	11.1	2.5	0.0	0.0	0.0	0.0	0.0	77.4
INFIL. 20%	0.2	6.1	4.6	2.3	2.7	2.8	0.6	0.0	0.0	0.0	0.0	0.0	19.3

ESTACION - 089

AÑO	OCT	NOV	DIC	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGOS	SEPT	TOTAL
1979 - 80	0.0	20.9	0.0	70.5	17.4	85.0	32.9	0.0	0.0	0.0	0.0	29.1	255.8
1980 - 81	0.0	0.0	48.2	22.1	108.8	0.0	0.5	0.0	0.0	0.0	0.0	0.0	179.6
1981 - 82	29.2	26.6	0.0	28.4	114.8	210.3	31.9	0.0	0.0	0.0	0.0	0.0	441.2
1982 - 83	16.4	0.0	5.4	0.0	20.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	42.3
1983 - 84	0.0	94.8	7.4	114.9	3.5	77.2	0.0	0.0	0.0	0.0	0.0	44.9	342.7
1984 - 85	0.0	65.6	327.5	86.4	0.0	3.1	0.0	0.0	0.0	0.0	0.0	0.0	482.6
1985 - 86	0.0	76.4	70.9	96.9	49.5	0.0	12.1	0.0	0.0	0.0	0.0	0.0	305.8
1986 - 87	0.0	4.3	0.0	26.0	0.0	54.8	0.0	0.0	0.0	0.0	0.0	0.0	85.1
1987 - 88	39.7	35.5	66.7	53.3	109.3	13.8	0.0	0.0	0.0	0.0	0.0	0.0	318.3
1988 - 89	1.6	175.4	0.0	0.0	233.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	410.9
1989 - 90	63.9	283.2	61.9	1.7	0.0	125.8	0.0	0.0	0.0	0.0	0.0	0.0	536.5
TOTAL LLUVIA UTIL	170.8	782.7	588.0	500.2	657.7	570.0	77.4	0.0	0.0	0.0	0.0	74.0	3400.8
MEDIA LLUVIA UTIL	15.5	71.2	53.4	45.5	59.8	51.8	7.0	0.0	0.0	0.0	0.0	6.7	309.16
HIPOTESIS													
ESCORR. 80%	12.4	56.9	42.8	36.4	47.8	41.5	5.6	0.0	0.0	0.0	0.0	5.4	247.3
INFIL 20%	3.1	14.2	10.7	9.1	12.0	10.4	1.4	0.0	0.0	0.0	0.0	1.3	61.8

ESTACION - 086

AÑO	ост	NOV	DIC	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGOS	SEPT	TOTAL
1979 - 80	0.5	0.0	0.0	66.4	0.0	54.0	15.9	0.0	0.0	0.0	0.0	0.0	136.8
1980 - 81	0.0	0.0	0.0	0.0	81.2	0.0	5.0	0.0	0.0	0.0	0.0	0.0	86.2
1981 - 82	29.0	0.0	0.0	0.0	162.0	0.0	28.9	0.0	0.0	0.0	0.0	0.0	219.9
1982 - 83	0.0	44.9	0.0	0.0	21.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	66.6
1983 - 84	0.0	120.7	3.5	4.0	0.0	63.4	0.0	0.0	0.0	0.0	0.0	15.5	207.1
1984 - 85	0.0	35.6	190.0	87.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	313.1
1985 - 86	0.0	0.0	24.7	0.0	0.0	19.1	0.0	0.0	0.0	0.0	0.0	0.0	43.6
1986 - 87	0.0	0.0	0.0	20.0	0.0	61.1	0.0	0.0	0.0	0.0	0.0	0.0	81.1
1987 - 88	10.5	122.4	52.8	20.0	68.5	34.4	0.0	0.0	0.0	0.0	0.0	0.0	308.6
1988 - 89	0.0	144.3	0.0	7.5	141.5	14.1	0.0	0.0	0.0	0.0	0.0	0.0	307.4
1989 - 90	27.0	182.5	36.0	0.0	0.0	37.7	0.0	0.0	0.0	0.0	0.0	0.0	283.2
TOTAL LLUVIA UTIL	67.0	650.4	307.0	205.4	474.9	283.8	49.8	0.0	0.0	0.0	0.0	15.5	2053.6
MEDIA LLUVIA UTIL	6.1	59.1	27.9	18.7	43.2	25.8	4.5	0.0	0.0	0.0	0.0	1.4	196.7
HIPOTESIS													
ESCORR. 80%	4.9	47.3	22.3	14.9	34.5	20.6	3.6	0.0	0.0	0.0	0.0	1.1	149.4
INFIL. 20%	1.2	11.8	5.6	3.7	8.6	5.1	0.9	0.0	0.0	0.0	0.0	0.3	37.2

ESTACION - 078

AÑO	OCT	NOV	DIC	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGOS	SEPT	TOTAL
1979 - 80	0.0	0.0	0.0	52.5	0.0	32.7	16.2	0.0	0.0	0.0	0.0	0.0	101.4
1980 - 81	0.0	0.0	0.0	0.0	18.2	0.0	6.6	0.0	0.0	0.0	0.0	0.0	24.8
1981 - 82	19.0	10.0	0.0	0.0	67.7	31.4	0.0	0.0	0.0	0.0	0.0	0.0	128.1
1982 - 83	0.0	2.8	0.0	0.0	6.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.7
1983 - 84	0.0	77.4	7.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	86.1
1984 - 85	0.0	0.5	121.8	34.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	156.3
1985 - 86	0.0	0.0	3.5	0.0	0.0	8.2	0.0	0.0	0.0	0.0	·' 0.0	0.0	11.7
1986 - 87	0.0	0.0	0.0	5.8	0.0	13.8	0.0	0.0	0.0	0.0	0.0	0.0	19.6
1987 - 88	0.0	62.2	25.7	0.0	42.0	12.8	0.0	0.0	0.0	0.0	0.0	0.0	142.7
1988 - 89	0.0	78.7	0.0	8.0	67.8	1.6	0.0	0.0	0.0	0.0	0.0	0.0	156.1
1989 - 90	14.1	91.6	5.9	0.0	0.0	14.4	0.0	0.0	0.0	0.0	0.0	0.0	126.0
TOTAL LLUVIA UTIL	33.1	323.2	164.6	100.3	202.6	114.9	22.8	0.0	0.0	0.0	0.0	1.0	962.5
MEDIA LLUVIA UTIL	3.0	29.4	15.0	9.1	18.4	10.4	2.1	0.0	0.0	0.0	0.0	0.1	87.5
HIPOTESIS							-						
ESCORR. 80%	2.4	23.5	12.0	7.3	14.7	8.4	1.7	0.0	0.0	0.0	0.0	0.1	70.0
INFIL 20%	0.6	5.9	3.0	1.8	3.7	2.1	0.4	0.0	0.0	0.0	0.0	0.0	17.5

ESTACION - 064

AÑO	OCT	NOV	DIC	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGOS	SEPT	TOTAL
1979 - 80	0.0	0.0	3.4	49.5	0.0	44.5	20.6	0.0	0.0	0	0.0	0.0	118.0
1980 - 81	0.0	8.1	2.6	0.0	35.0	0.0	11.5	0.0	0.0	0.0	0.0	0.0	57.2
1981 - 82	37.9	15.9	0.0	6.0	17.0	4.0	0.0	0.0	0.0	0.0	0.0	0.0	80.8
1982 - 83	0.0	25.3	0.0	0.0	6.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	31.6
1983 - 84	0.0	184.7	11.0	32.0	0.0	86.8	0.0	0.0	0.0	0.0	0.0	19.6	334.1
1984 - 85	0.0	46.0	66.1	121.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	233.9
1965 - 66	0.0	0.0	41.2	17.0	0.0	24.6	0.0	0.0	0.0	0.0	0.0	0.0	82.8
1986 - 87	0.0	0.0	0.0	20.2	0.0	38.4	0.0	0.0	0.0	0.0	0.0	0.0	58.6
1987 - 88	37.0	42.2	143.3	36.8	114.5	17.2	0.0	0.0	0.0	0.0	0.0	0.0	391.0
1988 - 89	0.0	178.7	11.5	16.0	110.4	2.4	0.0	0.0	0.0	0.0	0.0	0.0	319.0
1989 - 90	14.7	107.5	20.0	4.5	0.0	15.7	0.0	0.0	0.0	0.0	0.0	0.0	162.4
TOTAL LLUVIA UTIL	89.6	608.4	299.1	303.8	283.2	233.6	32.1	0.0	0.0	0.0	0.0	19.6	1869.4
MEDIA LLUVIA UTIL	8.1	55.3	27.2	27.6	25.7	21.2	2.9	0.0	0.0	0.0	0.0	1.8	169.9
HIPOTESIS										<u></u>		· · · · · · · · · · · · · · · · · · ·	
ESCORR. 80%	6.5	44.2	21.8	22.1	20.6	17.0	2.3	0.0	0.0	0.0	0.0	1.4	136.0
INFIL 20%	1.6	11.1	5.4	5.5	5.1	4.2	0.6	0.0	0.0	0.0	0.0	0.4	34.0

ESTACION - 062

AÑO	ост	NOA	DIC	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGOS	SEPT	TOTAL
1979 - 80	0.0	0.0	0.0	62.6	0.0	12.6	16.8	0.0	0.0	0.0	0.0	0.0	92.0
1980 - 81	0.0	0.0	0.0	0.0	2.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.5
1981 -82	0.0	0.0	0.0	0.0	20.1	0.0	12.8	0.0	0.0	0.0	0.0	0.0	32.9
1982 -83	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1983 - 84	0.0	13.9	0.0	0.0	0.0	13.5	0.0	0.0	0.0	0.0	0.0	0.0	27.4
1984 - 85	0.0	0.0	74.5	14.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	88.8
1985 - 86	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0
1986 - 87	0.0	0.0	0.0	0.0	0.0	27.0	0.0	0.0	0.0	0.0	0.0	0.0	27.0
1987 - 88	0.0	0.0	0.0	0.0	15.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	15.5
1988 - 89	0.0	12.0	0.0	0.0	47.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	59.1
1969 - 90	4.0	46.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0
TOTAL LLUVIA UTIL	4.0	71.9	74.5	76.9	85.2	54.1	29.6	0.0	0.0	0.0	0.0	0.0	396.2
MEDIA LLUVIA UTIL	0.4	6.5	6.8	7.0	7.7	4.9	2.7	0.0	0.0	0.0	0.0	0.0	36.0
HIPOTESIS					····				, , , , , , , , , , , , , , , , , , , ,		·		
ESCORR. 80%	0.3	5.2	5.4	5.6	6.2	3.9	2.2	0.0	0.0	0.0	0.0	0.0	28.8
INFIL 20%	0.1	1.3	1.4	1.4	1.5	1.0	0.5	0.0	0.0	0.0	0.0	0.0	7.2

ESTACION - 013

AÑO	ост	NOV	DIC	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGOS	SEPT	TOTAL
1979 - 80	0.0	0.0	9.0	80.5	0.0	54.0	24.2	0.0	0.0	0.0	0.0	0.0	167.7
1980 - 81	0.0	0.5	0.0	0.0	67.7	0.0	15.5	0.0	0.0	0.0	0.0	0.0	83.7
1981 - 82	35.4	12.1	0,0	14.7	0.0	106.7	23.0	0.0	0.0	0.0	0.0	0.0	191.9
1982 - 83	0.0	112.9	0.0	0.0	22.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	135.2
1983 - 84	0.0	171.0	41.9	6.3	0.8	96.6	0.0	0.0	0.0	0.0	0.0	15.0	331.6
1984 - 85	0.0	50.4	220.0	102.7	0.0	0.0	6.6	0.0	0.0	0.0	0.0	0.0	379.7
1985 - 86	0.0	0.0	19.8	0.0	21.8	24.0	1.5	0.0	0.0	0.0	0.0	0.0	67.1
1986 - 87	0.0	0.0	0.0	41.3	0.0	52.7	0.0	0.0	0.0	0.0	0.0	0.0	94.0
1987 - 88	8.7	101.0	89.2	21.6	82.4	36.2	0.0	0.0	0.0	0.0	0.0	0.0	339.1
1988 - 89	0.0	211.0	4.2	16.7	108.5	2.6	0.0	0.0	0.0	0.0	0.0	0.0	343.0
1989 - 90	42.7	287.9	56.6	0.0	0.0	24.7	0.0	0.0	0.0	0.0	0.0	0.0	411.9
TOTAL LLUVIA UTIL	86.8	946.8	440.7	283.8	303.5	397.5	70.8	0.0	0.0	0.0	0.0	15.0	2544.9
MEDIA LLUVIA UTIL	7.9	86.1	40.1	25.8	27.6	36.1	6.4	0.0	0.0	0.0	0.0	1.4	231.4
HIPOTESIS						<u> </u>							
ESCORR. 80%	6.3	68.9	32.1	20.6	22.1	28.9	5.1	0.0	0.0	0.0	0.0	1.1	185.1
INFIL 20%	1.6	17.2	8.0	5.2	5.5	7.2	1.3	0.0	0.0	0.0	0.0	0.3	46.3

ESTACION - 010

AÑO	ост	NOV	DIC	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGOS	SEPT	TOTAL
1979 - 80	0.0	0.0	0.0	103.1	0.0	98.2	39.5	0.0	0.0	0.0	0.0	0.0	240.8
1980 - 81	0.0	10.4	0.7	0.0	78.5	0.0	21.1	0.0	0.0	0.0	0.0	0.0	110.7
1981 - 82	53.6	0.0	0.0	0.0	195.0	185.0	42.1	0.0	0.0	0.0	0.0	0.0	475.7
1982 - 83	0.0	1.4	0.0	0.0	27.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	28.4
1983 - 84	0.0	179.3	7.1	34.7	0.0	92.1	0.0	0.0	0.0	0.0	0.0	23.3	336.
1984 - 85	0.0	60.4	218.9	97.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	376.
1985 - 86	0.0	19.2	52.2	16.9	26.0	59.6	0.0	0.0	0.0	0.0	0.0	0.0	173.
1986 - 87	0.0	0.0	0.0	36.0	0.0	45.5	0.0	0.0	0.0	0.0	0.0	0.0	181.
1967 - 88	53.4	113.3	84.8	42.3	73.5	33.6	0.0	0.0	0.0	0.0	0.0	0.0	500.
1988 - 89	0.0	413.8	0.0	0.0	160	0.0	0.0	0.0	0.0	0.0	0.0	0.0	573.
1969 - 90	88.6	229.2	181.1	4.5	0.0	53.7	0.0	0.0	0.0	0.0	0.0	0.0	557.
TOTAL LLUVIA UTIL	195.6	1027.0	544.8	434.9	516.0	567.7	102.7	0.0	0.0	0.0	0.0	23.3	3566
MEDIA LLUVIA UTIL	17.8	93.4	49.5	39.5	46.9	51.6	9.3	0.0	0.0	0.0	0.0	2.1	323
HIPOTESIS													
ESORR. 80%	14.2	74.7	39.6	31.6	37.5	41.3	7.4	0.0	0.0	0.0	0.0	1.7	258.
INFIL. 20%	3.6	18.7	9.9	7.9	9.4	10.3	1.9	0.0	0.0	0.0	0.0	0.4	64

ESTACION - 009

AÑO	OCT	NOV	DIC	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGOS	SEPT	TOTAL
1979 - 80	0.0	0.0	0.0	113.3	0.0	80.0	63.4	0.0	0.0	0.0	0.0	0.0	256.7
1980 - 81	0.0	1.7	0.0	0.0	135.0	0.0	15.0	0.0	0.0	0.0	0.0	0.0	151.7
1981 - 82	44.0	30.0	0.0	19.0	180.0	151.0	38.0	0.0	0.0	0.0	0.0	0.0	462.0
1982 - 83	0.0	25.0	0.0	0.0	32.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	57.7
1983 - 84	0.5	187.0	0.0	42.0	14.0	142.0	0.5	0.0	0.0	0.0	0.0	19.0	405.0
1984 - 85	0.0	86.0	309.6	122.5	0.0	0.0	11.0	0.0	0.0	0.0	0.0	0.0	529.1
1985 - 86	0.0	25.0	62.0	26.1	38.2	37.6	0.0	0.0	0.0	0.0	0.0	0.0	188.9
1986 - 87	0.0	0.0	0.0	45.0	0.0	92.5	0.0	0.0	0.0	0.0	0.0	0.0	137.5
1987 - 88	12.4	218.0	86.0	32.5	99.0	76.0	0.0	0.0	0.0	0.0	0.0	0.0	523.9
1988 - 89	0.0	218.0	0.0	5.4	301.1	22.7	0.0	0.0	0.0	0.0	0.0	0.0	547.2
1989 - 90	72.4	301.0	102.0	0.0	0.0	87.0	0.0	0.0	0.0	0.0	0.0	0.0	562.4
TOTAL LLUVIA UTIL	129.3	1091.7	559.6	405.8	800.0	688.8	127.9	0.0	0.0	0.0	0.0	19.0	3822.1
MEDIA LLUVIA UTIL	11.8	99.2	50.9	36.9	72.7	62.6	11.6	0.0	0.0	0.0	0.0	1.7	347.5
HIPOTESIS													1
ESCORR. 80%	9.4	79.4	40.7	29.5	58.2	50.1	9.3	0.0	0.0	0.0	0.0	1.4	278.0
INFIL. 20%	2.4	19.8	10.2	7.4	14.5	12.5	2.3	0.0	0.0	0.0	0.0	0.3	69.5

ESTACION - 110

AÑO	OCT	NOV	DIC	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGOS	SEPT	TOTAL
1979 - 80	0.0	0.0	0.0	64.1	0.0	25.2	0.0	0.0	0.0	0.0	0.0	0.0	89.3
1980 - 81	0.0	0.9	8.0	0.0	4.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	13.3
1981 - 82	6.7	5.0	0.0	0.0	26.9	18.6	0.0	0.0	0.0	0.0	0.0	0.0	57.2
1982 - 83	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1983 - 84	0.0	74.9	0.0	12.7	0.0	30.7	0.0	0.0	0.0	0.0	0.0	0.0	118.3
1984 - 85	0.0	0.0	69.8	9.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	79.6
1985 - 86	0.0	0.0	0.0	10.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.4
1986 - 87	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1987 - 88	21.0	18.1	32.8	0.0	44.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	97.3
1988 - 89	0.0	33.9	6.5	0.0	26.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	67.1
1989 - 90	0.0	100.0	25.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.0
TOTAL LLUVIA UTIL	27.7	232.8	142.1	97.0	102.4	74.5	0.0	0.0	0.0	0.0	0.0	0.0	676.5
MEDIA LLUVIA UTIL	2.5	21.2	12.9	8.8	9.3	6.8	0.0	0.0	0.0	0.0	0.0	0.0	61.5
HIPOTESIS		-											
ESCORR. 80%	2.0	16.9	10.3	7.0	7.4	5.4	0.0	0.0	0.0	0.0	0.0	0.0	49.2
INFIL. 20%	0.5	4.2	2.6	1.8	1.9	1.4	0.0	0.0	0.0	0.0	0.0	0.0	12.5

ESTACION - 108

AÑO	ост	NOV	DIC	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGOS	SEPT	TOTAL
1979 - 80	0.0	0.0	0.0	27.2	0.0	7.2	1.7	0.0	0.0	0.0	0.0	0.0	36.1
1980 - 81	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1981 - 82	1.7	0.4	0.0	0.0	0.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	5.1
1982 - 83	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1983 - 84	0.0	49.7	1.1	0.0	0.0	5.5	0.0	0.0	0.0	0.0	0.0	0.0	56.3
1984 - 85	0.0	0.0	0.0	34.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	34.6
1985 - 86	0.0	0.0	0.0	0.0	0.0	19.8	0.0	0.0	0.0	0.0	0.0	0.0	19.8
1986 - 87	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1987 - 88	0.0	0.0	6.2	0.0	39.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	45.2
1988 - 89	0.0	8.2	0.0	0.0	70.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	78.2
1989 - 90	4.0	67.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	67.2
TOTAL LLUVIA UTIL	5.7	125.5	7.3	61.8	109.0	35.5	1.7	0.0	0.0	0.0	0.0	0.0	342.5
MEDIA LLUVIA UTIL	0.6	11.4	0.7	5.7	9.9	3.2	0.2	0.0	0.0	0.0	0.0	0.0	31.1
HIPOTESIS													
ESCORR. 80%	0.5	9.2	0.6	4.5	7.9	2.5	0.2	0.0	0.0	0.0	0.0	0.0	24.9
INFIL. 20%	0.1	2.2	0.1	1.2	2.0	0.7	0.0	0.0	0.0	0.0	0.0	0.0	6.2

ANEJO III.4.

Tablas 21 a 35. Lluvia útil media, infiltración y escorrentía

ETP MEDIA MENSUAL ESTIMADA

ESTACION	ост	NOV	DIC	ENE	FEBR	MAR	ABR	MAY	JUN	JUL	AG0	SEP
009	1.94	1.10	0.59	0.90	0.89	1.10	1.50	2.56	3.0	3.0	3.0	3.0
010	1.95	1.11	0.60	0.90	0.91	1.11	1.52	2.58	3.0	3.0	3.0	3.0
013	2.61	1.75	1.04	1.06	1.34	1.68	1.82	2.68	3.0	3.0	3.0	3.0
062	3.0	3.0	2.54	1.68	2.75	3.0	2.72	3.0	3.0	3.0	3.0	3.0
064	2.50	1.60	0.95	1.02	1.24	1.58	1.70	2.71	3.0	3.0	3.0	3.0
078	2.34	1.47	0.84	0.97	1.11	1.45	1.69	2.72	3.0	3.0	3.0	3.0
086	2.52	1.61	0.96	1.03	1.26	1.60	1.77	2.72	3.0	3.0	3.0	3.0
089	1.95	1.11	0.60	0.90	0.91	1.11	1.52	2.58	3.0	3.0	3.0	3.0
093	3.0	2.90	2.18	1.52	2.39	2.83	2.48	3.0	3.0	3.0	3.0	3.0
097	3.0	3.0	2.54	1.68	2.75	3.0	2.72	3.0	3.0	3.0	3.0	3.0
108	3.0	2.56	1.89	1.35	1.96	2.52	2.30	3.0	3.0	3.0	3.0	3.0
110	3.0	2.94	2.14	1.52	2.37	2.81	2.47	3.0	3.0	3.0	3.0	3.0
130	3.0	3.0	2.31	1.60	2.57	3.0	2.60	3.0	3.0	3.0	3.0	3.0
160	3.0	1.87	1.46	1.23	1.73	2.16	2.07	3.0	3.0	3.0	3.0	3.0
204	3.0	3.0	2.30	1.59	2.55	3.0	2.58	3.0	3.0	3.0	3.0	3.0

ETP MEDIA MENSUAL ESTIMADA

ESTACION	COTA	ОСТ	NOV	DIC	ENE	FEBR	MAR	ABR	MAY	JUN	JUL	AG0	SEP
009	1215	60.0	33.0	18.3	27.8	24.8	34.2	45.0	79.3	103.0	188.0	179.7	100.6
010	1195	60.5	33.3	18.5	28.0	25.6	34.4	45.7	80.0	103.2	188.3	180.3	100.9
013	900	81.0	51.2	32.2	32.9	37.5	52.2	54.5	83.0	106.0	191.0	185.7	112.4
062	170	142.2	101.9	78.7	52.2	77.0	102.8	81.5	101.4	114.7	205.0	202.6	146.5
064	960	77.4	48.0	29.6	31.7	34.7	49.1	52.7	83.9	105.4	191.3	184.3	110.2
078	875	72.5	44.2	26.0	30.0	31.0	45.0	50.6	83.4	105.0	190.6	183.3	108.0
086	925	78.0	48.4	29.9	32.0	35.2	49.5	53.1	84.4	105.8	192.0	184.9	110.6
089	1195	60.5	33.3	18.5	28.0	25.6	34.4	45.7	80.0	103.2	188.3	180.3	100.9
093	255	127.2	86.9	67.7	47.2	67.0	87.8	74.5	97.4	112.3	202.0	197.8	141.5
097	5	142.2	101.9	78.7	52.2	77.0	102.8	81.5	101.4	114.7	205.0	202.6	146.5
108	55	114.0	76.7	58.7	42.0	55.0	78.0	69.0	93.4	110.7	199.0	194.6	130.5
110	265	126.0	86.2	67.2	47.0	66.3	87.2	74.0	97.0	112.0	201.0	197.3	137.0
130	125	137.2	93.9	71.7	49.7	72.0	95.5	78.0	99.0	113.4	203.0	200.1	141.5
160	650	96.5	56.0	45.2	38.0	48.3	67.0	62.0	90.2	108.5	195.7	190.3	122.0
204	150	132.2	92.9	71.3	49.3	71.5	99.8	77.5	98.4	113.2	202.5	199.5	140.6

ETP EN LA ESTACION DE MOGAN (COTA 10)

AÑO 1989

OCTUBRE	142.2
	404.0
NOVIEMBRE	101.9
DICIEMBRE	78.7
ENERO	52.2
FEBRERO	77
MARZO	102.8
ABRIL	81.5
MAYO	101.4
JUNIO	114.7
JULIO	150.8
AGOSTO	202.6
SEPTIEMBRE	146.5

ETP EN LA ESTACION DE MOGAN-INAGUA (COTA 950)

AÑO	ост	NOV	DIC	ENE	FEBR	MAR	ABR	MAY	JUN	JUL	AG0	SEP
1961	69.3	37.3	43.0	32.8	26.7	36.7	74.9	101.5	100.6	197.2	255.5	132.0
1962	65.9	36.3	36.3	32.0	30.6	84.8	63.5	68.8	94.7	207.1	158.6	101.9
1963	105.0	60.9	25.2	21.5	45.9	53.7	35.6	136.1	122.0	217.1	191.2	144.7
1964	86.7	70.7	23.1	23.6	22.6	72.2	58.7	112.7	162.5	166.7	173.8	109.5
1965	49.4	44.9	39.2	52.2	56.4	51.4	85.8	103.2	102.4	152.8	186.8	81.8
1966	57.1	32.0	23.6	28.3	40.6	53.3	23.5	47.2	96.5	184.8	138.0	85.6
1967	55.6	26.4	26.4	19.1	39.2	51.7	26.6	45.4	95.0	185.7	177.8	91.7
1969	62.7	71.6	24.0	29.0	32.5	32.5	67.8	82.6	81.9	245.1	234.7	120.7
1970	82.2	48.1	32.1	55.4	31.4	26.6	38.2	54.7	126.1	178.5	170.9	121.8
1971	128.3	60.1	31.5	32.2	26.3	30.8	56.5	95.7	104.7	165.6	146.4	92.8
1972	90.1	41.8	22.8	23.3	30.9	47.9	49.7	77.5	76.8	206.8	198.0	132.2
ETP MEDIA	77.5	48.2	29.7	31.8	34.8	49.2	52.8	84.1	105.7	191.6	184.7	110.4
MENSUAL												

ANEJO III.3.

Tablas 17 a 20. Evapotranspiración

TEMPERATURAS MOGAN-INAGUA (COTA 950 m.a.n.m)

AÑO	ост	NOV	DIC	ENE	FEBR	MAR	ABR	MAY	JUN	JUL	AG0	SEP	MEDIA ANUAL
1961	20	16	17	15	14	15	20	22	22	29	33	26	18,50
1962	19	15	15	14	14	21	18	18	21	30	27	23	19,50
1963	24	20	14	13	18	18	15	25	24	30	29	27	21,40
1964	22	21	13	13	13	20	18	23	27	27	28	24	20,75
1965	17	17	16	18	19	17	21	22	22	26	27	21	20,25
1966	16	12	10	11	14	15	9	13	20	29	25	20	16,16
1967	16	11	11	9	14	15	10	13	20	29	29	21	16,50
1969	19	21	13	14	15	14	19	20	20	32	32	25	20,30
1970	21	17	14	18	14	12	14	16	24	28	28	25	19,25
	26	19	14	14	13	13	17	21	22	27	26	22	19,50
1971	20 22	16	12	12	14	16	16	19	19	30	30	26	19,30
1972			14	18	14	11	12	20	21	30	28	28	19,60
1973	23	17	14										
Media mensual	20.4	16.8	13.6	14.1	14.7	15.6	15.8	19.3	21.8	28.9	28.7	24.0	

Media anual del período 1961-73: 19,25°C

ANEJO III.2.

Tabla 16. Temperaturas

ESTACION: E130 - LLUVIAS MENSUALES (Cota: 125 m)

AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	TOTAL
1980	49.3	0.0	23.5	8.3	0.0	0.0	0.0	0.0	7.3	0.0	0.0	0.0	88.5
1981	0.0	14,3	0.0	10.0	0.0	0.0	0.0	0.0	0.0	14.3	10.8	1.5	50.9
1982	0.0	64.3	5.9	40.0	0.0	0.0	0.0	0.0	0.0	15.7	3.0	0.0	128.9
1983	0.0	11.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.3	55.6	4.1	75.0
1984	5.7	0.0	42.3	0.0	0.0	0.0	0.0	0.0	6.0	0.0	1.5	80.0	135.5
1985	33.0	11.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	46.0
1986	2.5	0.0	15.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0	19.5
1987	14.3	0.0	22.0	0.0	0.0	0.0	0.0	0.0	0.0	24.7	29.0	15.0	105.0
1988	0.0	59.7	25.3	0.0	0.0	0.0	0.0	0.0	8.0	1.2	83.4	5.1	182.7
1989	3.8	70.0	3.9	0.0	0.0	0.0	0.0	0.0	0.0	24.9	68.2	13.7	184.5
1990	4.3	0.0	19.2	0.0	2.3	0.0	0.0	0.0	0.0	0.0	28.2	12.5	66.5

Media anual: 98,4 mm

ESTACION: E110 - LLUVIAS MENSUALES (Cota: 265 m)

AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC	TOTAL
1980	90.2	5.6	51.3	14.2	3.4	0.0	0.0	0.0	11.3	0.0	13.7	21.3	211.0
1981	1.4	21.5	0.0	12.3	0.0	0.0	0.0	0.0	1.0	24.2	18.0	0.5	78.9
1982	3.1	44.1	42.3	35.1	0.7	0.0	0.0	0.0	0.0	10.7	1.6	2.8	140.4
1983	3.8	14.7	0.2	0.0	0.0	0.0	0.0	0.0	0.7	2.1	130.5	14.2	166.2
1984	27.2	0.0	71.3	1.7	0.0	0.0	0.0	0.0	17.6	0.0	23.8	102.2	243.8
1985	40.5	5.0	1.0	13.8	0.0	0.0	0.0	0.0	0.0	0.0	15.9	29.6	105.8
1986	28.2	13.1	20.5	5.6	0.5	0.0	0.0	0.0	5.5	2.5	0.0	5.3	81.2
1987	15.9	0.0	15.0	0.0	0.0	0.0	0.0	0.0	0.0	40.0	53.1	60.8	184.8
1988	19.8	74.0	10.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	84.1	22.2	210.9
1989	0.0	57.2	6.3	0.0	0.0	0.0	0.0	0.0	0.0	7.0	140.0	60.0	270.5
1990	0.0	0.0	2.3	0.0	0.0	0.0	0.0	0.0	0.0	2.7	52.0	82.4	139.4

Media anual: 166,6 mm

ESTACION: E108 - LLUVIAS MENSUALES (Cota: 55 m)

.00	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC	TOTAL
AÑO		PEO -	MAN	ADII									123.0
1980	54.0	0.0	27.7	23.9	0.0	0.0	0.0	0.0	4.6	0.0	6.2	6.6	Į.
1981	2.5	10.1	0.0	1.6	0.0	0.0	0.0	0.0	0.0	14.7	13.0	0.3	42.2
	1.1	14.4	29.5	8.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	53.0
1982			0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.9	96.1	14.2	128.2
1983	3.0	8.0					0.0	0.0	0.9	0.0	4.6	47.3	80.7
1984	5.8	0.0	22.1	0.0	0.0	0.0					4.0	5.0	20.5
1985	11.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			i
1986	3.4	6.6	34.9	1.2	0.0	0.0	0.0	0.0	7.0	0.0	0.0	2.6	55.7
1987	8.0	0.0	6.0	0.0	0.0	0.0	0.0	0.0	0.0	14.5	13.9	38.5	80.9
	4.6	63.3	12.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	42.3	3.0	125.2
1988				0.0	0.0	0.0	0.0	0.0	0.0	20.0	91.3	18.6	229.9
1989	0.0	95.0	5.0					0.0	0.0	3.0	34.4	34.5	81.2
1990	0.0	0.0	9.3	0.0	0.0	0.0	0.0	0.0	0.0	3.0		J-7.0	

Media anuai: 92,7 mm

ESTACION: E097 - LLUVIAS MENSUALES (Cota: 5 m)

AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC	TOTAL
1980	51.4	2.0	22.8	18.0	0.0	0.0	0.0	0.0	4.4	0.0	2.5	2.5	103.6
1981	4.0	14.2	0.0	0.0	0.0	0.0	0.0	0.0	0.3	7.0	13.0	0.2	38.7
1982	0.0	26.5	18.0	3.8	0.0	0.0	0.0	0.0	0.0	1.1	1.6	0.0	51.0
	0.0	3.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	63.0	24.0	90.9
1983	4.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.0	60.0	67.5
1984			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.5	1.5	21.8
1985	18.8	0.0		0.0	0.0	0.0	0.0	0.0	3.5	0.0	0.0	0.0	44.7
1986	2.5	6.2	10.0				0.0	0.0	0.0	7.0	12.0	30.0	52.2
1987	3.2	0.0	0.0	0.0	0.0	0.0			7.1	0.0	43.0	0.7	104.6
1988	0.0	34.9	17.4	0.0	0.0	1.5	0.0	0.0					161.8
1989	0.0	76.0	5.8	0.0	0.0	0.0	0.0	0.0	0.0	5.0	60.0	15.0	i
1990	0.0	0.0	7.4	1.1	1.1	0.0	0.0	0.0	1.3	0.0	23.6	36.4	70.9

Media anual: 73,4 mm

ESTACION: E093 - LLUVIAS MENSUALES (Cota: 255 m)

AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC	TOTAL
1980	86.0	0.0	59.5	39.3	0.0	0.0	0.0	0.0	5.3	0.0	6.3	0.0	196.4
1981	0.0	27.0	0.0	6.4	0.0	0.0	0.0	0.0	0.0	26.2	25.4	8.3	93.3
1982	13.3	52.8	70.8	38.0	0.0	0.0	0.0	0.0	0.0	0.0	16.2	0.0	191.1
1983	4.7	20.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0	158.7	26.8	215.7
1984	14.5	4.8	87.4	0.0	0.0	0.0	0.0	0.0	9.0	0.0	45.0	166.5	327.2
1985	88.8	6.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24.4	23.5	143.1
1986	7.2	14.0	41.4	50.0	0.0	0.0	0.0	0.0	2.3	0.0	0.0	4.5	119.4
1987	18.3	0.0	20.7	0.0	0.0	0.0	0.0	0.0	0.0	36.0	73.9	93.1	242.0
1988	27.7	78.1	13.7	0.0	0.0	0.0	0.0	0.0	4.4	0.0	159.6	17.5	301.0
1989	20.0	118.5	10.6	0.0	0.0	0.0	0.0	0.0	0.0	13.4	156.5	68.7	387.7
1990	10.5	0.0	14.1	3.0	2.0	0.0	0.0	0.0	2.2	4.2	64.9	71.0	171.9

Media anual: 217,1 mm

ESTACION: E089 - LLUVIAS MENSUALES (Cota: 1.195 m)

AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC	TOTAL
1980	115.9	38.2	111.3	60.5	10.5	0.0	0.0	0.0	62.4	20.5	28.7	72.9	520.9
1981	44.9	136.1	3.0	25.2	3.0	0.0	0.0	0.0	10.0	51.6	37.7	4.5	316.0
1982	42.1	131.0	241.4	61.4	5.5	0.0	0.0	0.0	0.0	24.2	12.8	32.2	550.6
1983	6.9	39.6	6.5	0.0	0.0	0.0	0.0	0.0	1.5	7.4	129.2	31.0	222.1
1984	155.5	5.6	106.0	5.0	4.0	0.0	0.0	0.0	62.9	0.0	91.7	353.5	784.2
1985	129.9	17.0	18.6	18.3	0.0	2.8	0.0	0.0	0.0	0.0	99.5	92.0	378.1
1986	124.1	75.8	57.1	31.1	2.3	0.0	0.0	0.0	10.0	13.0	27.6	19.7	360.7
1987	45.3	0.0	76.3	0.0	0.0	0.0	0.0	0.0	2.2	90.1	157.1	84.9	455.9
1988	80.5	141.1	32.5	0.0	0.0	2.4	0.0	0.0	0.0	13.5	212.5	9.9	492.4
1989	16.7	269.7	35.7	4.0	1.4	0.0	0.0	0.0	0.4	79.7	336.9	94.3	838.8
1990	22.9	0.0	139.5	19.1	15.2	0.0	0.0	0.0	0.0	7.0	82.5	282.7	568.9

Media anual: 498,9 mm

ESTACION: E086 - LLUVIAS MENSUALES (Cota: 925 m)

AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC	TOTAL
1960	90,5	3.0	86.6	45.5	2.0	0.0	0.0	0.0	7.0	0.0	9.5	2.2	246.3
	5.7	114.5	2.0	17.5	0.0	0.0	0.0	0.0	0.0	44.0	39.5	2.3	225.5
1981	26.0	177.0	122.8	57.6	0.0	0.0	0.0	0.0	0.0	0.0	56.5	0.0	439.9
1982	6.0	25.2	1.7	0.0	0.0	0.0	0.0	0.0	0.0	5.3	158.0	18.1	214.3
1983	18.0	6.0	97.8	6.0	0.0	0.0	0.0	0.0	34.5	0.0	55.3	210.5	428.1
1984	121.2	12.2	0.0	13.0	0.0	0.0	0.0	0.0	0.0	0.0	12.2	37.6	196.2
1985	121.2	35.5	35.5	13.0	0.0	0.0	0.0	0.0	7.3	0.0	0.0	6.0	109.3
1986	37.2	0.0	81.4	0.0	0.0	0.0	0.0	0.0	0.7	38.5	142.0	80.5	380.3
1987	38.5	86.5	50.8	0.0	0.0	0.0	0.0	0.0	5.0	2.0	206.2	21.0	410.0
1988	38.5 18.5	169.5	27.3	0.0	1.5	0.0	0.0	2.0	0.4	46.5	223.8	70.0	559.5
1989 1990	10.0	0.0	52.5	4.0	1.0	0.0	0.0	0.0	3.0	2.4	58.7	117.9	249.5

Media anual: 314,4 mm

ESTACION: E078 - LLUVIAS MENSUALES (Cota: 875 m)

AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC	TOTAL
	79.9	0.0	55.7	44.7	0.0	0.0	0.0	0.0	8.2	0.4	9.2	0.0	198.1
1980	14.6	32.6	0.0	20.0	0.0	0.0	0.0	0.0	0.0	33.7	21.4	4.5	126.8
1981	2.2	81.0	41.3	28.9	0.0	0.0	0.0	0.0	0.0	2.5	14.3	0.0	170.2
1982	4.0	18.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.4	107.7	18.5	153.6
1983	7.0	5.3	80.8	0.0	0.0	0.0	0.0	0.0	17.0	0.0	15.0	146.0	271.1
1984	60.0	4.1	6.1	2.2	0.0	0.0	0.0	0.0	0.0	0.0	12.3	16.0	100.7
1985	8.4	6.2	21.2	4.8	0.0	0.0	0.0	0.0	5.1	0.0	0.0	3.0	48.7
1986	21.5	0.0	42.5	0.0	0.0	0.0	0.0	0.0	0.0	27.0	81.2	40.7	212.9
1987	7.2	67.5	30.0	0.0	0.0	0.0	0.0	0.0	8.0	0.6	112.0	14.2	239.5
1988		86.9	13.1	0.0	4.6	0.0	0.0	0.0	0.0	28.3	132.0	44.3	328.1
1989	18.9				1.0	0.0	0.0	0.0	0.0	0.0	48.3	52.1	137.1
1990	4.6	0.0	28.9	2.2	1.0	0.0	0.0	0.0	0.0	0.0	40.0	- JE. 1	1

Media anual: 180,6 mm

ESTACION: E064 - LLUVIAS MENSUALES (Cota: 960 m)

ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC	TOTAL
118.0	2.5	78.4	48.2	0.0	0.0	0.0	0.0	11.2	0.0	22.4	13.5	294.2
			23.3	0.0	0.0	0.0	0.0	0.0	52.9	27.5	5.0	194.5
					0.0	0.4	0.0	0.0	8.0	38.9	0.7	136.0
					0.0	0.0	0.0	0.0	15.9	216.2	34.5	304.4
					0.0	0.0	0.0	36.1	0.0	73.0	195.2	480.8
					0.0	0.0	0.0	0.0	0.0	27.2	46.4	247.3
					0.0	0.0	0.0	5.5	4.3	0.3	6.0	140.1
					0.0	0.0	0.0	0.7	78.9	142.6	176.9	496.0
					2.0	0.0	0.0	5.9	2.4	221.5	31.0	497.9
							0.0	0.1	37.6	176.5	20.0	423.9
_								0.4	4.5	133.6	162.9	360.5
	ENE 118.0 5.8 28.0 7.7 44.7 154.4 35.1 37.0 63.8 28.8 15.5	118.0 2.5 5.8 80.0 28.0 40.0 7.7 29.4 44.7 6.0 154.4 7.9 35.1 27.0 37.0 -1.0 63.8 135.7 28.8 140.5	118.0 2.5 78.4 5.8 80.0 0.0 28.0 40.0 20.0 7.7 29.4 0.7 44.7 6.0 109.7 154.4 7.9 1.4 35.1 27.0 41.2 37.0 -1.0 59.9 63.8 135.7 33.6 28.8 140.5 18.9	118.0 2.5 78.4 48.2 5.8 80.0 0.0 23.3 28.0 40.0 20.0 0.0 7.7 29.4 0.7 0.0 44.7 6.0 109.7 14.5 154.4 7.9 1.4 10.0 35.1 27.0 41.2 18.2 37.0 -1.0 59.9 0.0 63.8 135.7 33.6 0.0 28.8 140.5 18.9 0.0	118.0 2.5 78.4 48.2 0.0 5.8 80.0 0.0 23.3 0.0 28.0 40.0 20.0 0.0 0.0 7.7 29.4 0.7 0.0 0.0 44.7 6.0 109.7 14.5 1.6 154.4 7.9 1.4 10.0 0.0 35.1 27.0 41.2 18.2 2.5 37.0 -1.0 59.9 0.0 0.0 63.8 135.7 33.6 0.0 2.0 28.8 140.5 18.9 0.0 1.5	118.0 2.5 78.4 48.2 0.0 0.0 5.8 80.0 0.0 23.3 0.0 0.0 28.0 40.0 20.0 0.0 0.0 0.0 7.7 29.4 0.7 0.0 0.0 0.0 44.7 6.0 109.7 14.5 1.6 0.0 154.4 7.9 1.4 10.0 0.0 0.0 35.1 27.0 41.2 18.2 2.5 0.0 37.0 -1.0 59.9 0.0 0.0 0.0 63.8 135.7 33.6 0.0 2.0 2.0 28.8 140.5 18.9 0.0 1.5 0.0	118.0 2.5 78.4 48.2 0.0 0.0 0.0 5.8 80.0 0.0 23.3 0.0 0.0 0.0 28.0 40.0 20.0 0.0 0.0 0.0 0.4 7.7 29.4 0.7 0.0 0.0 0.0 0.0 44.7 6.0 109.7 14.5 1.6 0.0 0.0 154.4 7.9 1.4 10.0 0.0 0.0 0.0 35.1 27.0 41.2 18.2 2.5 0.0 0.0 37.0 -1.0 59.9 0.0 0.0 0.0 0.0 63.8 135.7 33.6 0.0 2.0 2.0 0.0 28.8 140.5 18.9 0.0 1.5 0.0 0.0	118.0 2.5 78.4 48.2 0.0 0.0 0.0 0.0 0.0 5.8 80.0 0.0 23.3 0.0 0.0 0.0 0.0 0.0 28.0 40.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.7 29.4 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 44.7 6.0 109.7 14.5 1.6 0.0 0.0 0.0 0.0 154.4 7.9 1.4 10.0 0.0 0.0 0.0 0.0 0.0 35.1 27.0 41.2 18.2 2.5 0.0 0.0 0.0 0.0 37.0 -1.0 59.9 0.0 0.0 0.0 0.0 0.0 0.0 63.8 135.7 33.6 0.0 2.0 2.0 2.0 0.0 0.0 0.0 0.0 28.8 140.5 18.9 0.0 1.5 0.0 0.0 0.0 0.0 0.0	118.0 2.5 78.4 48.2 0.0 0.0 0.0 0.0 0.0 11.2 5.8 80.0 0.0 23.3 0.0 0.0 0.0 0.0 0.0 0.0 28.0 40.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.7 29.4 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 44.7 6.0 109.7 14.5 1.6 0.0 0.0 0.0 0.0 36.1 154.4 7.9 1.4 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 35.1 27.0 41.2 18.2 2.5 0.0 0.0 0.0 0.0 5.5 37.0 -1.0 59.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 63.8 135.7 33.6 0.0 2.0 2.0 0.0 0.0 0.0 0.0 0.1 28.8 140.5 18.9 0.0 1.5 0.0 0.0 0.0 0.0 0.0	118.0 2.5 78.4 48.2 0.0 0.0 0.0 0.0 11.2 0.0 5.8 80.0 0.0 23.3 0.0 0.0 0.0 0.0 0.0 0.0 52.9 28.0 40.0 20.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 8.0 7.7 29.4 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.9 44.7 6.0 109.7 14.5 1.6 0.0 0.0 0.0 36.1 0.0 154.4 7.9 1.4 10.0 0.0 0.0 0.0 0.0 0.0 0.0 36.1 0.0 35.1 27.0 41.2 18.2 2.5 0.0 0.0 0.0 0.0 5.5 4.3 37.0 -1.0 59.9 0.0 0.0 0.0 0.0 0.0 0.0 5.5 4.3 28.8 135.7 33.6 0.0 2.0 2.0 0.0 0.0 0.0 0.0 5.9 2.4 28.8 140.5 18.9 0.0 1.5 0.0 0.0 0.0 0.0 0.0 0.1 37.6	ENE FES MAR ABR MAI COL COL <td>118.0 2.5 78.4 48.2 0.0 0.0 0.0 0.0 11.2 0.0 22.4 13.5 5.8 80.0 0.0 23.3 0.0 0.0 0.0 0.0 0.0 52.9 27.5 5.0 28.0 40.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0 38.9 0.7 7.7 29.4 0.7 0.0 0.0 0.0 0.0 0.0 0.0 15.9 216.2 34.5 44.7 6.0 109.7 14.5 1.6 0.0 0.0 0.0 36.1 0.0 73.0 195.2 154.4 7.9 1.4 10.0 0.0 0.0 0.0 0.0 36.1 0.0 73.0 195.2 154.4 7.9 1.4 10.0 0.0 0.0 0.0 0.0 0.0 0.0 27.2 46.4 35.1 27.0 41.2 18.2 2.5 0.0 0.0 0.0 0.0 5.5 4.3 0.3 6.0 37.0 -1.0 59.9 0.0 0.0 0.0 0.0 0.0 5.5 4.3 0.3 6.0 37.0 -1.0 59.9 0.0 0.0 0.0 0.0 0.0 0.0 5.9 2.4 221.5 31.0 28.8 140.5 18.9 0.0 1.5 0.0 0.0 0.0 0.0 0.0 1.37.6 176.5 20.0</td>	118.0 2.5 78.4 48.2 0.0 0.0 0.0 0.0 11.2 0.0 22.4 13.5 5.8 80.0 0.0 23.3 0.0 0.0 0.0 0.0 0.0 52.9 27.5 5.0 28.0 40.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0 38.9 0.7 7.7 29.4 0.7 0.0 0.0 0.0 0.0 0.0 0.0 15.9 216.2 34.5 44.7 6.0 109.7 14.5 1.6 0.0 0.0 0.0 36.1 0.0 73.0 195.2 154.4 7.9 1.4 10.0 0.0 0.0 0.0 0.0 36.1 0.0 73.0 195.2 154.4 7.9 1.4 10.0 0.0 0.0 0.0 0.0 0.0 0.0 27.2 46.4 35.1 27.0 41.2 18.2 2.5 0.0 0.0 0.0 0.0 5.5 4.3 0.3 6.0 37.0 -1.0 59.9 0.0 0.0 0.0 0.0 0.0 5.5 4.3 0.3 6.0 37.0 -1.0 59.9 0.0 0.0 0.0 0.0 0.0 0.0 5.9 2.4 221.5 31.0 28.8 140.5 18.9 0.0 1.5 0.0 0.0 0.0 0.0 0.0 1.37.6 176.5 20.0

Media anual: 325,05 mm

ESTACION: E062 - LLUVIAS MENSUALES (Cota: 170 m)

AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC	TOTAL
1980	89.4	0.0	39.6	29.6	4.5	0.0	0.0	0.0	2.0	0.0	0.0	0.0	165.1
1981	0.0	15.3	0.0	9.1	0.0	0.0	0.0	0.0	0.0	5.0	8.0	1.3	38.7
1982	0.0	38.5	9.5	40.7	0.0	0.0	0.0	0.0	0.0	0.0	4.0	0.0	92.7
1983	2.0	10.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.0	50.2	12.5	77.7
1984	7.4	0.0	35.5	0.0	0.0	0.0	0.0	0.0	10.0	0.0	2.5	103.0	158.4
1985	30.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.0	0.0	33.0
1986	3.0	0.0	14.0	0.0	0.0	0.0	0.0	0.0	4.3	0.0	0.0	0.0	21.3
1987	12.0	0.0	45.5	0.0	0.0	0.0	0.0	0.0	2.0	21.5	19.8	22.0	122.8
1988	2.0	42.0	12.0	0.0	0.0	0.0	0.0	0.0	7.5	0.0	65.0	3.2	131.7
1989	0.0	64.6	4.5	0.0	0.0	0.0	0.0	0.0	0.0	20.0	70.5	17.0	176.6
1990	2.0	0.0	8.2	0.0	2.0	0.0	0.0	0.0	1.0	0.0	37.8	32.3	83.3

Media anual: 100,1 mm

ESTACION: E013 - LLUVIAS MENSUALES (Cota: 900 m)

AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC	TOTAL
1980	110.9	2.4	101.0	54.0	4.2	0.0	0.0	0.0	9.1	0.0	14.0	8.2	301.1
1981	6.0	95.1	2.4	28.6	0.2	0.0	0.0	0.0	0.5	49.1	24.5	6.8	213.2
1982	27.8	151.5	131.7	53.4	0.0	0.0	0.0	0.0	0.0	4.4	130.7	0.0	499.5
1983	6.5	38.2	1.0	0.0	0.0	0.0	0.0	0.0	0.0	9.7	212.8	24.0	292.2
1984	18.0	13.4	131.1	13.0	0.0	0.0	0.0	0.0	34.1	0.0	74.4	244.2	511.2
1965	132.1	10.0	0.0	25.7	0.0	0.0	0.0	0.0	0.0	0.0	20.9	32.8	221.4
1986	15.3	41.0	37.4	26.3	0.0	0.0	0.0	0.0	6.1	0.0	0.0	5.9	132.0
1987	61.0	0.0	73.6	0.0	0.0	0.0	0.0	0.0	0.0	42.1	139.1	114.4	430.2
1988	46.7	103.3	51.3	0.0	3.4	0.0	0.0	0.0	3.6	3.4	251.9	19.6	423.2
1989	27.7	142.8	16.0	0.0	4.6	0.0	0.0	0.4	0.0	60.5	322.2	99.9	674.1
1990	7.8	0.0	39.8	8.0	3.3	0.0	0.0	0.0	3.4	6.0	85.3	174.5	328.1

Media anual: 371,4

ESTACION: E010 - LLUVIAS MENSUALES (Cota: 1.195 m)

AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC	TOTAL
1980	121.5	13.7	126.9	62.0	8.8	0.0	0.0	0.0	22.0	2.5	21.5	15.5	394.4
1981	11.0	104.4	5.0	36.7	2.5	0.0	0.0	0.0	0.0	69.9	41.3	0.8	271.6
1982	36.0	207.8	212.7	60.3	0.4	0.0	0.0	0.0	0.0	14.8	20.3	1.3	553.6
1983	9.9	51.7	5.7	0.0	0.0	0.0	0.0	0.0	1.1	20.6	208.1	28.9	326.0
1984	59.2	4.3	121.8	12.9	2.2	0.0	0.0	0.0	45.3	0.0	80.2	244.5	570.4
1985	135.4	13.9	1.9	10.1	0.0	0.5	0.0	0.0	0.0	0.0	41.2	65.5	268.5
1986	36.7	55.2	64.9	9.9	2.0	0.0	0.0	0.0	9.2	4.7	0.1	9.2	191.9
1987	54.1	0.0	64.2	0.0	0.0	0.0	0.0	0.0	1.7	89.2	129.6	106.0	444.8
1988	68.8	91.1	48.0	0.0	0.2	0.0	0.0	0.0	1.3	8.4	440.6	13.0	671.4
1989	11.0	181.6	17.0	0.0	4.3	0.0	0.0	1.0	0.3	108.9	277.0	210.8	778.9
1990	15.4	0.0	67.0	16.0	8.7	0.0	0.0	0.0	0.0	4.5	157.6	350.8	620.0

Media anual: 539,4 mm

ESTACION: E009 - LLUVIAS MENSUALES (Cota: 1.215 m)

AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	TOTAL
1980	137.3	3.8	115.2	94.8	6.8	0.0	0.0	0.0	10.0	0.0	12.8	0.0	380.7
1981	8.2	165.4	0.0	31.8	0.0	0.0	0.0	0.0	1.8	57.3	40.8	1.1	306.4
1982	30.7	188.5	179.5	71.0	0.0	0.0	0.0	0.0	0.0	5.0	39.5	1.5	515.7
1983	10.5	46.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	16.0	219.3	21.0	315.8
1984	64.0	16.5	174.3	14.8	0.0	0.0	0.0	0.0	35.0	0.0	103.8	340.4	748.8
1985	159.3	16.5	0.0	25.5	0.0	0.0	0.0	0.0	0.0	0.0	57.1	74.9	333.3
1986	40.6	52.4	45.8	14.7	5.5	0.0	0.0	0.0	7.5	7.0	0.0	7.9	181.4
1987	61.3	0.0	108.8	0.0	0.0	0.0	0.0	0.0	1.1	70.1	202.3	108.5	552.1
1988	52.8	121.6	81.5	0.0	0.0	0.0	0.0	0.0	10.2	4.5	258.1	15.3	544.0
1989	19.0	332.2	35.9	0.0	5.0	0.0	0.0	0.0	0.6	83.5	330.8	127.6	934.6
1990	10.6	0.0	100.6	5.8	2.5	0.0	0.0	0.0	1.5	4.3	95.3	234.6	455.2

Media anual: 478,9 mm

ESTACION: E160 - LLUVIAS MENSUALES (Cota: 650 m)

AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC	TOTAL
	90.6	0.0	65.5	63.2	0.4	0.8	0.0	0.0	6.2	0.0	10.6	2.2	239.5
1980	3.6	55.7	2.8	27.0	0.0	0.0	0.0	0.0	0.8	43.0	25.3	15.4	173.6
1981	9.9	108.4	103.4	48.2	0.0	0.0	0.0	0.0	0.0	8.0	98.8	0.0	369.5
1982	9.9 6.0	36.9	0.7	0.0	0.0	0.0	0.0	0.0	0.0	5.9	186.5	17.5	253.5
1983	9.0	9.9	113.4	8.5	0.0	0.0	0.0	0.0	8.0	0.0	44.5	253.8	446.7
1984	147.7	29.4	4.2	10.7	0.1	0.0	0.0	0.0	0.1	0.0	20.2	32.9	245.3
1985	5.4	20.0	29.3	37.0	0.0	0.0	0.0	0.0	6.4	0.0	0.0	5.5	103.6
1986	46.1	0.0	50.2	0.0	0.0	0.0	0.0	0.0	0.0	40.0	60.0	100.0	296.3
1987	19.4	86.4	41.0	0.0	3.8	0.5	0.0	0.0	4.0	1.3	270.7	25.8	452.8
1988	32.5	112.3	19.6	0.0	1.7	0.0	0.0	0.0	0.0	65.5	241.2	60.0	532.8
1989 19 9 0	32.5 16.5	0.0	32.0	9.9	1.0	0.0	0.0	0.0	0.7	3.2	94.7	130.9	288.9

Media anual: 309,3 mm

ESTACION: E204 - LLUVIAS MENSUALES (Cota: 150 m)

AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC	TOTAL
1980	68.9	0.0	31.3	28.6	0.0	0.0	0.0	0.0	4.1	0.0	5.2	0.0	138.1
1981	0.0	19.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	13.5	18.2	0.0	50.7
1982	6.4	44.0	36.8	24.2	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	113.4
1983	0.0	15.1	1.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	122.9	20.6	160.4
1984	6.6	4.2	59.7	3.0	0.0	0.0	0.0	0.0	6.5	0.0	6.0	111.6	197.6
1965	21.6	6.4	0.0	12.2	0.0	0.0	0.0	0.0	0.0	0.0	5.0	11,1	56.3
1986	2.0	5.5	18.2	11.2	0.0	0.0	0.0	0.0	4.7	0.0	0.0	2.7	44.3
1987	14.3	0.0	6.8	0.0	0.0	0.0	0.0	0.0	0.0	12.0	40.0	28.2	101.3
1988	4.5	57.3	7.3	0.0	0.0	0.0	0.0	0.0	5.4	0.5	74.8	0.0	149.8
1989	5.2	107.2	7.2	0.0	3.0	0.0	0.0	0.0	0.0	7.0	94.6	27.2	244.2
1990	3.5	0.0	10.3	2.3	0.0	0.0	0.0	0.0	5.4	0.0	50.3	50.8	122.6

Media anual: 125,3 mm

Tabla 1

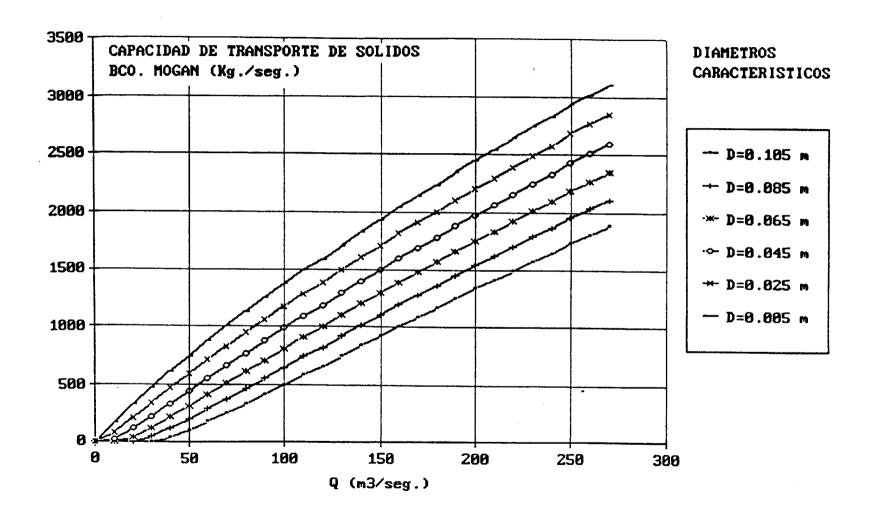
ANEJO III.1.

Tablas 1 a 15. Series pluviométricas

CALCULO DE LAS MAXIMAS AVENIDAS (m³/seg.).

Cuenca: MOGAN

METODO RACIONAL


Tr=5 años	Tr=25 años	Tr=50 años	Tr=100 años	Tr=500 años	
72.62	109.96	125.41	140.76	176.18	
		METODO DE	LAS ISOCRONAS		
Tr=5 años	Tr=25 años	Tr=50 años	Tr=100 años	Tr=500 años	
109.70	165.80	189.00	212.10	265.30	
	SANTI		291.20		
	GREAGER		316.73		
	FORTI		267.75		
	QUIJANO		178.14		
	ZAPATA		173.98		
	KUICKLING	ł	125.68		
	TURAZZA		255.37		
	HERAS		238.80		

CAPACIDAD DE TRANSPORTE DE SOLIDOS (Kg/seg.) SEGUN DIAMETROS

.....

CAUDAL D=0.105 m D=0.085 m D=0.065 m D=0.045 m D=0.025 m D=0.005 m (m3/seg.)

0	0.0	0.0	0.0	0.0	0.0	0.0
10	0.0	0.0	0.0	15.4	78.2	167.5
20	0.0	0.0	37.8	112.8	211.0	327.7
30	0.1	42.8	120.0	219.7	337.8	471.7
40	40.0	116.0	214.9	332.3	465.5	613.0
50	100.8	196.1	310.4	441.0	586.1	744.2
60	174.2	284.8	412.1	554.2	709.7	877.5
70	248.8	371.2	508.9	660.4	824.5	1000.3
80	327.5	460.2	607.1	767.0	938.9	1122.0
90	409.4	551.2	706.4	874.0	1053.0	1242.8
100	493.6	643.7	806.5	981.1	1166.7	1362.8
110	579.8	737.4	907.2	1088.4	1280.2	1482.1
120	653.8	817.4	992.8	1179.1	1375.8	1582.4
130	742.5	912.7	1094.2	1286.3	1488.6	1700.4
140	829.7	1005.9	1193.0	1390.5	1597.7	1814.4
150	908.3	1089.5	1281.4	1483.4	1695.0	1915.8
160	997.8	1184.4	1381.4	1588.3	1804.5	2029.8
170	1076.3	1267.4	1468.7	1679.7	1899.8	2128.8
180	1153.1	1348.5	1553.7	1768.5	1992.3	2224.9
190	1240.1	1440.0	1649.6	1868.5	2096.3	2332.7
200	1322.8	1526.9	1740.4	1963.1	2194.5	2434.4
210	1398.9	1606.6	1823.6	2049.6	2284.3	2527.3
220	1476.2	1687.5	1908.0	2137.3	2375.2	2621.3
230	1559.4	1774.4	1998.5	2231.3	2472.4	2721.7
240	1631.0	1849.1	2076.2	2311.8	2555.8	2807.7
250	1721.8	1943.7	2174.4	2413.6	2660.9	2916.2
260	1793.8	2018.6	2252.2	2494.1	2744.0	3001.9
270	1866.0	2093.7	2330.0	2574.5	2827.1	3087.4

CUENCA: MOGAN

TEMPORAL DE 5 HORAS DE DURACION.

PERIODO DE RETORNO: 500 AÃOS

APORTACIONES (*1000 m3) CAUDAL (m3/meg.)

 HORA
 APORTAMAR
 CAUDAL
 APORACUM

 0.0
 0.00
 0.00
 0.00

 0.5
 20.30
 11.3
 20.30

 1.0
 62.73
 34.9
 83.04

CUENCA: MOGAN

TEMPORAL DE 6 HORAS DE DURACION.

PERIODO DE RETORNO: 500 AÑOS

APORTACIONES (*1000 m3) CAUDAL (m3/seg.)

HORA	APORTAMAR	CAUDAL	APORACUH
0.0	0.00	0.0	0.00
0.5	20.30	11.3	20.30
1.0	62.73	34.9	83.04
1.5	132.93	73.9	215.97
2.0	194.47	108.0	410.44
2.5	329.59	183.1	740.03
3.0	448.93	249.4	1188.96
3.5	430.76	239.3	1619.72
4.0	409.97	227.8	2029.69
4.5	363.82	202.1	2393.51
5.0	317.09	176.2	2710.60
5.5	271.14	150.6	2981.74
6.0	224.84	124.9	3206.57
6.5	178.22	99.0	3384.79
7.0	131.28	72.9	3516.07
7.5	90.00	50.0	3606.07
8.0	52.66	29.3	3658.72
8.5	25.21	14.0	3683.94
9.0	0.00	0.0	3683.94

1.5	132.93	73.9	215.97
2.0	194.47	108.0	410.44
2.5	329.59	183.1	740.03
3.0	448.93	249.4	1188.96
3.5	430.76	239.3	1619.72
4.0	409.97	227.8	2029.69
4.5	363.92	202.2	2393.61
5.0	317.39	176.3	2711.00
5.5	267.67	148.7	2978.68
6.0	213.10	116.4	3191.78
6.5	156.98	87.2	3348.76
7.0	106.60	59.2	3455.35
7.5	51.04	28.4	3506.40
8.0	0.00	0.0	3506.40

CUENCA: MOGAN

TEMPORAL DE 8 HORAS DE DURACION.

PERIODO DE RETORNO: 500 AÑOS

APORTACIONES (*1000 m3) CAUDAL (m3/eeg.)

HORA	APORTAMAR	CAUDAL	APORACUM
0.0	0.00	0.0	0.00
0.5	19.72	11.0	19.72
1.0	60.92	33.8	80.64
1.5	129.10	71.7	209.74
2.0	188.86	104.9	398.60
2.5	320.16	177.9	718.76
3.0	436.22	242.3	1154.98
3.5	418.82	232.7	1573.80
4.0	398.82	221.6	1972.62
4.5	354.65	197.0	2327.27
5.0	310.05	172.3	2637.32
5.5	265.68	147.6	2903.01
6.0	220.68	122.6	3123.69
6.5	179.73	99.9	3303.42
7.0	142.71	79.3	3446.13
7.5	114.60	63.7	3560.73
8.0	88.77	49.3	3649.50
8.5	84.87	47.1	3734.36
9.0	76.71	42.6	3811.07
9.5	63.21	35.1	3874.27
10.0	51.37	28.5	3925.65
10.5	24.60	13.7	3950.24
11.0	0.00	0.0	3950.24

CUENCA: HOGAN

TEMPORAL DE 1 HORAS DE DURACION.

PERIODO DE RETORNO: 500 AÑOS

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

APORTACIONES (*1000 m3) CAUDAL (m3/seg.)

HORA APORTAMAR CAUDAL APORACUM

0.00 0.0 0.00

34.16 19.0 34.16

105.56 58.6 139.73

189.52 105.3 329.25

221.67 123.2 550.92

337.61 187.7 888.73

449.50 249.7 1338.23

215.24 119.6 1553.47

0.00 0.0 1553.47

CUENCA: MOGAN

TEMPORAL DE 2 HORAS DE DURACION.

APORTACIONES (*1000 m3) CAUDAL (m3/seg.)

PERIODO DE RETORNO: 500 AÑOS

HORA APORTAMAR CAUDAL APORACUM 0.00 0.0 0.00 0.0 0.5 23.43 13.0 23.43 72.39 40.2 95.81 1.0 153.38 85.2 249.19 1.5 224.39 124.7 473.59 2.0 2.5 361.60 200.9 835.18 3.0 460.23 255.7 1295.42 379.23 210.7 1674.65 3.5 308.23 171.2 1982.88 4.0 4.5 147.59 82.0 2130.47 5.0 0.00 0.0 2130.47

CUENCA: HOGAN

TEMPORAL DE 3 HORAS DE DURACION.

PERIODO DE RETORNO: 500 AROS

APORTACIONES (*1000 m3) CAUDAL (m3/seg.)

CUENCA: MOGAN

TEMPORAL DE 4 HORAS DE DURACION.

PERIODO DE RETORNO: 500 AÑOS

APORTACIONES (*1000 m3) CAUDAL (m3/meg.)

HORA	APORTAMAR	CAUDAL	APORACUM	HORA	APORTAMAR	CAUDAL	APORACUM
0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
0.5	21.57	12.0	21.57	0.5	20.99	11.7	20.99
1.0	66.65	37.0	88.23	1.0	64.85	36.0	85.83
1.5	141.24	78.5	229.47	1.5	137.41	76.3	223.24
2.0	206.63	114.8	436.09	2.0	201.02	111.7	424.25
2.5	350.35	194.6	786.44	2.5	340.62	189.2	764.88
3.0	477.48	265.3	1263.92	3.0	463.87	257.7	1228.74
3.5	445.60	247.6	1709.52	3.5	444.92	247.2	1673.66
4.0	396.56	220.3	2106.08	4.0	423.33	235.2	2096.99
4.5	307.71	170.9	2413.79	4.5	367.11	204.0	2464.10
5.0	228.60	127.0	2642.39	5.0	301.31	167.4	2765.42
5.5	109.46	60.8	2751.86	5.5	229.67	127.6	2995.09
6.0	0.00	0.0	2751.86	6.0	165.67	92.0	3160.76
				6.5	79.33	44.1	3240.09
				7.0	0.00	0.0	3240.09

CUENCA: MOGAN

TEMPORAL DE 1 HORAS DE DURACION.

PERIODO DE RETORNO: 500 AÑOS

APORTACIONES (*1000 m3) CAUDAL (m3/seg.)

CUENCA: MOGAN

TEMPORAL DE 2 HORAS DE DURACION.

PERIODO DE RETORNO: 500 AÑOS

APORTACIONES (*1000 m3) CAUDAL (m3/eeg.)

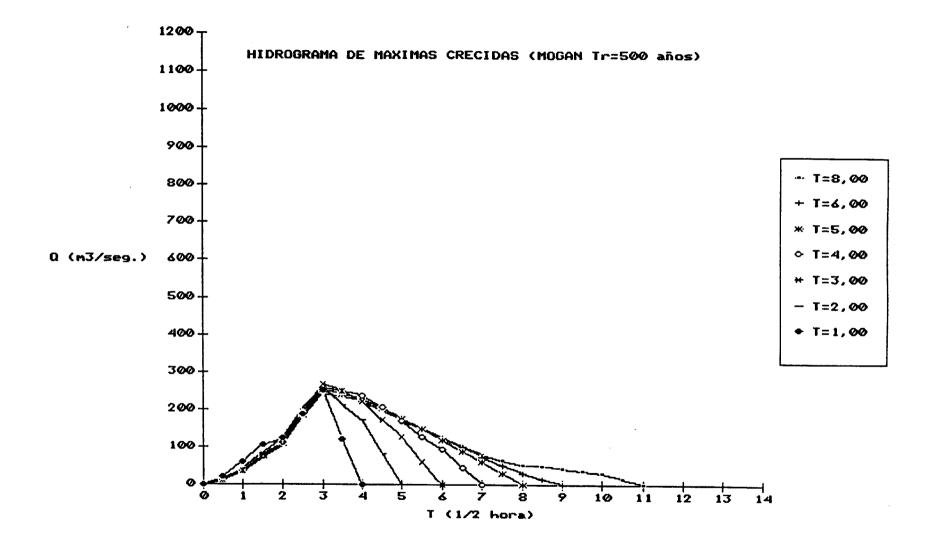
A I	APORTAMAR	CAUDAL	APORACUM	HORA	APORTAMAR	CAUDAL	APORACUM
0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
5	34.16	19.0	34.16	0.5	23.43	13.0	23.43
0	105.56	58.6	139.73	1.0	72.39	40.2	95.81
5	189.52	105.3	329.25	1.5	153.38	85.2	249.19
٥	221.67	123.2	550.92	2.0	224.39	124.7	473.59
5	337.81	187.7	888.73	2.5	361.60	200.9	835.18
٥	449.50	249.7	1338.23	3.0	460.23	255.7	1295.42
5	215.24	119.6	1553.47	3.5	379.23	210.7	1674.65
0	0.00	0.0	1553.47	4.0	308.23	171.2	1982.88
				4.5	147.59	82.0	2130.47
				5.0	0.00	0.0	2130.47

CUENCA: HOGAN

TEMPORAL DE 3 HORAS DE DURACION.

PERIODO DE RETORNO: 500 AROS

APORTACIONES (*1000 m3) CAUDAL (m3/seg.)


CUENCA: MOGAN

TEMPORAL DE 4 HORAS DE DURACION.

PERIODO DE RETORNO: 500 AÑOS

APORTACIONES (*1000 m3) CAUDAL (m3/seg.)

HORA	APORTAMAR	CAUDAL	APORACUM	HORA	APORTAMAR	CAUDAL	APORACUM
0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
0.5	21.57	12.0	21.57	0.5	20.99	11.7	20.99
1.0	66.65	37.0	88.23	1.0	64.85	36.0	85.83
1.5	141.24	78.5	229.47	1.5	137.41	76.3	223.24
2.0	206.63	114.8	436.09	2.0	201.02	111.7	424.25
2.5	350.35	194.6	786.44	2.5	340.62	189.2	764.88
3.0	477.48	265.3	1263.92	3.0	463.87	257.7	1228.74
3.5	445.60	247.6	1709.52	3.5	444.92	247.2	1673.66
4.0	396.56	220.3	2106.08	4.0	423.33	235.2	2096.99
4.5	307.71	170.9	2413.79	4.5	367.11	204.0	2464.10
5.0	228.60	127.0	2642.39	5.0	301.31	167.4	2765.42
5.5	109.46	60.8	2751.86	5.5	229.67	127.6	2995.09
6.0	0.00	0.0	2751.86	6.0	165.67	92.0	3160.76
		•		6.5	79.33	44.1	3240.09
				7.0	0.00	0.0	3240.09

TEMPORAL DE 5 HORAS DE DURACION.

PERIODO DE RETORNO: 100 AÑOS

APORTACIONES (*1000 m3) CAUDAL (m3/seg.)

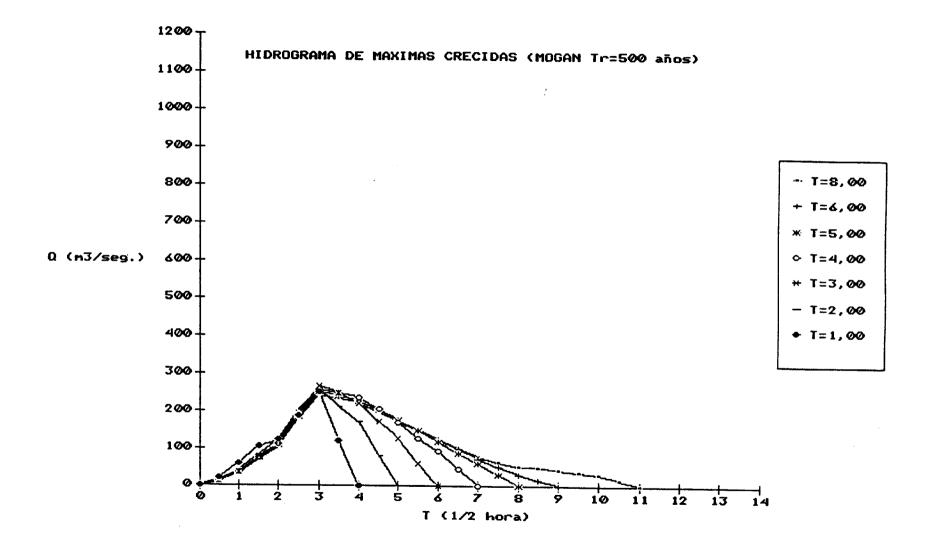
HORA APORTAMAR CAUDAL APORACUM 0.0 0.00 0.0 0.00 0.5 15.96 8.9 15.96 49.44 27.5 1.0 65.40 105.17 58.4 170.56 1.5 2.0 154.02 85.6 324.59 262.13 145.6 586.71 2.5 358.90 199.4 945.61 3.0 3.5 344.50 191.4 1290.12 328.04 182.2 1618.15 4.0 291.35 161.9 1909.51 4.5 254.05 141.1 2163.56 5.0 214.49 119.2 2378.05 5.5 170.86 94.9 2548.91 6.0 126.14 70.1 2675.05 6.5 85.74 47.6 2760.78 7.0 41.31 23.0 2802.10 7.5 0.00 0.0 2802.10

CUENCA: MOGAN

TEMPORAL DE 6 HORAS DE DURACION. PERIODO DE RETORNO: 100 AÑOS

APORTACIONES (*1000 m3) CAUDAL (m3/seg.)

HORA	APORTAMAR	CAUDAL	APORACUM
0.0	0.00	0.0	0.00
0.5	15.96	8.9	15.96
1.0	49.44	27.5	65.40
1.5	105.17	58.4	170.56
2.0	154.02	85.6	324.59
2.5	262.13	145.6	586.71
3.0	358.90	199.4	945.61
3.5	344.50	191.4	1290.12
4.0	328.04	182.2	1618.15
4.5	291.27	161.8	1909.43
5.0	253.82	141.0	2163.25
5.5	217.21	120.7	2380.45
6.0	180.10	100.1	2560.55
6.5	142.95	79.4	2703.50
7.0	105.32	58.5	2808.82
7.5	72.39	40.2	2881.22
8.0	42.35	23.5	2923.57
8.5	20.41	11.3	2943.98
9.0	0.00	0.0	2943.98


CUENCA: MOGAN

TEMPORAL DE 8 HORAS DE DURACION. PERIODO DE RETORNO: 100 AÑOS

8.0

APORTACIONES (*1000 m3) CAUDAL (m3/seg.)

HORA APORTAMAR CAUDAL APORACUM 0.00 0.0 0.00 0.0 0.5 15.50 8.6 15.50 48.01 26.7 63.51 1.0 102.13 56.7 165.64 1.5 149.58 83.1 315.22 2.0 254.63 141.5 569.85 2.5 3.0 348.74 193.7 918.58 3.5 334.95 186.1 1253.53 319.12 177.3 1572.65 4.0 4.5 283.92 157.7 1856.57 248.18 137.9 2104.75 5.0 212.83 118.2 2317.58 5.5 176.76 98.2 2494.34 6.0 144.10 80.1 2638.44 6.5 7.0 114.32 63.5 2752.76 7.5 91.85 51.0 2844.61 70.94 39.4 2915.55 8.0 67.87 37.7 2983.42 8.5 9.0 61.43 34.1 3044.05 9.5 50.71 28.2 3095.56 41.32 23.0 3136.88 10.0 19.91 11.1 3156.79 10.5 0.00 0.0 3156.79 11.0

TEMPORAL DE 5 HORAS DE DURACION. PERIODO DE RETORNO: 100 AÑOS

APORTACIONES (*1000 m3) CAUDAL (m3/meg.)

CUENCA: MOGAN

TEMPORAL DE 6 HORAS DE DURACION.
PERIODO DE RETORNO: 100 AÑOS

APORTACIONES (*1000 m3) CAUDAL (m3/meg.)

HORA	APORTAMAR	CAUDAL	APORACUM	HORA	APORTAMAR	CAUDAL	APORACUM
0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
0.5	15.96	8.9	15.96	0.5	15.96	8.9	15.96
1.0	49.44	27.5	65.40	1.0	49.44	27.5	65.40
1.5	105.17	58.4	170.56	1.5	105.17	58.4	170.56
2.0	154.02	85.6	324.59	2.0	154.02	85.6	324.59
2.5	262.13	145.6	586.71	2.5	262.13	145.6	586.71
3.0	358.90	199.4	945.61	3.0	358.90	199.4	945.61
3.5	344.50	191.4	1290.12	3.5	344.50	191.4	1290.12
4.0	328.04	182.2	1618.15	4.0	328.04	182.2	1618.15
4.5	291.35	161.9	1909.51	4.5	291.27	161.8	1909.43
5.0	254.05	141.1	2163.56	5.0	253.82	141.0	2163.25
5.5	214.49	119.2	2378.05	5.5	217.21	120.7	2380.45
6.0	170.86	94.9	2548.91	6.0	180.10	100.1	2560.55
6.5	126.14	70.1	2675.05	6.5	142.95	79.4	2703.50
7.0	85.74	47.6	2760.78	7.0	105.32	58.5	2808.82
7.5	41.31	23.0	2802.10	7.5	72.39	40.2	2881.22
8.0	0.00	0.0	2802.10	8.0	42.35	23.5	2923.57
				8.5	20.41	11.3	2943.98
				9.0	0.00	0.0	2943.98

CUENCA: MOGAN

TEMPORAL DE 8 HORAS DE DURACION. PERIODO DE RETORNO: 100 AÑOS

HORA	APORTAMAR	CAUDAL	APORACUM
0.0	0.00	0.0	0.00
0.5	15.50	8.6	15.50
1.0	48.01	26.7	63.51
1.5	102.13	56.7	165.64
2.0	149.58	83.1	315.22
2.5	254.63	141.5	569.85
3.0	348.74	193.7	918.58
3.5	334.95	186.1	1253.53
4.0	319.12	177.3	1572.65
4.5	283.92	157.7	1856.57
5.0	248.18	137.9	2104.75
5.5	212.83	118.2	2317.58
6.0	176.76	98.2	2494.34
6.5	144.10	80.1	2638.44
7.0	114.32	63.5	2752.76
7.5	91.85	51.0	2844.61
8.0	70.94	39.4	2915.55
8.5	67.87	37.7	2983.42
9.0	61.43	34.1	3044.85
9.5	50.71	28.2	3095.56
10.0	41.32	23.0	3136.88
10.5	19.91	11.1	3156.79
11.0	0.00	0.0	3156.79

TEMPORAL DE 1 HORAS DE DURACION. PERIODO DE RETORNO: 100 AÑOS

APORTACIONES (*1000 m3) CAUDAL (m3/meg.)

HORA APORTAMAR CAUDAL APORACUM

0.0 0.00 0.0 0.00

0.5 26.86 14.9 26.86

1.0 83.19 46.2 110.05

1.5 150.11 83.4 260.15

2.0 175.98 97.8 436.13

2.5 269.54 149.7 705.67

3.0 361.55 200.9 1067.22

3.5 174.22 96.8 1241.44

4.0 0.00 0.0 1241.44

CUENCA: MOGAN

TEMPORAL DE 2 HORAS DE DURACION. PERIODO DE RETORNO: 100 AÑOS

APORTACIONES (*1000 m3) CAUDAL (m3/seg.)

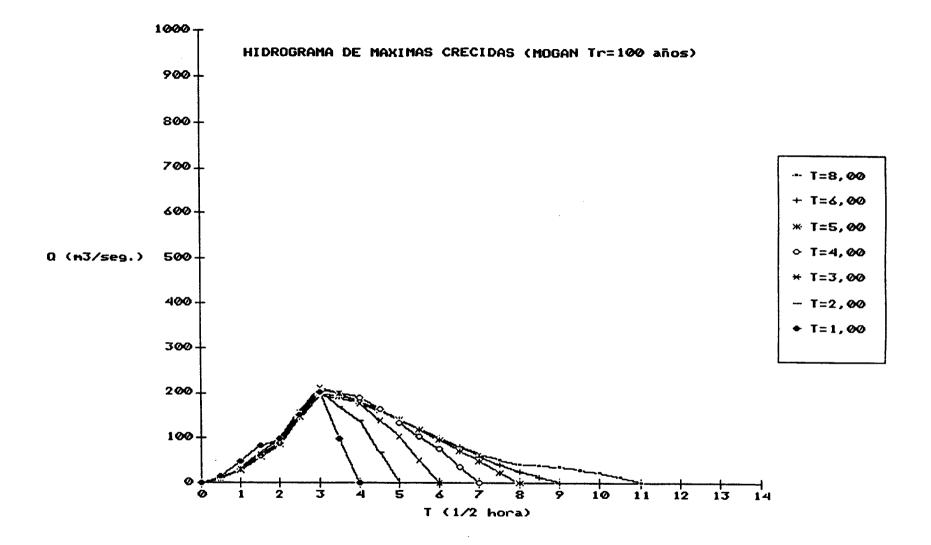
HORA	APORTAMAR	CAUDAL	APORACUM
0.0	0.00	0.0	0.00
0.5	18.42	10.2	18.42
1.0	57.04	31.7	75.46
1.5	121.35	67.4	196.81
2.0	177.72	98.7	374.52
2.5	287.76	159.9	662.28
3.0	368.59	204.8	1030.87
3.5	304.29	169.0	1335.16
4.0	247.92	137.7	1583.08
4.5	119.46	66.4	1702.54
5.0	0.00	0.0	1702.54

CUENCA: MOGAN

TEMPORAL DE 3 HORAS DE DURACION.

PERIODO DE RETORNO: 100 AROS

APORTACIONES (*1000 m3) CAUDAL (m3/meg.)


CUENCA: MOGAN

TEMPORAL DE 4 HORAS DE DURACION.

PERIODO DE RETORNO: 100 AÑOS

HORA	APORTAMAR	CAUDAL	APORACUM
0.0	0.00	0.0	0.00
0.5	16.96	9.4	16.96
1.0	52.53	29.2	69.49
1.5	111.74	62.1	181.23
2.0	163.65	90.9	344.87
2.5	278.63	154.8	623.51
3.0	381.72	212.1	1005.23
3.5	356.54	198.1	1361.77
4.0	317.79	176.6	1679.56
4.5	247.08	137.3	1926.64
5.0	183.87	102.2	2110.51
5.5	88.60	49.2	2199.12
6.0	0.00	0.0	2199.12

HORA	APORTAMAR	CAUDAL	APORACUM
0.0	0.00	0.0	0.00
0.5	16.50	9.2	16.50
1.0	51.10	28.4	67.60
1.5	108.71	60.4	176.31
2.0	159.21	88.4	335.51
2.5	270.90	150.5	606.41
3.0	370.84	206.0	977.25
3.5	355.83	197.7	1333.08
4.0	338.73	188.2	1671.82
4.5	294.03	163.4	1965.85
5.0	241.50	134.2	2207.35
5.5	184.46	102.5	2391.81
6.0	133.26	74.0	2525.07
6.5	64.21	35.7	2589.28
7.0	0.00	0.0	2589.28

TEMPORAL DE 5 HORAS DE DURACION.

PERIODO DE RETORNO: 50 AROS

APORTACIONES (*1000 m3) CAUDAL (m3/meg.)

HORA APORTAMAR CAUDAL APORACUM 0.00 0.0 0.00 0.0 14.07 7.8 14.07 0.5 43.65 24.3 57.72 1.0 93.11 51.7 150.84 1.5 136.47 75.8 287.31 2.0 232.91 129.4 520.22 2.5 319.88 177.7 840.10 3.0 307.12 170.6 1147.22 3.5 292.54 162.5 1439.76 4.0 259.90 144.4 1699.66 4.5 226.61 125.9 1926.27 5.0 191.44 106.4 2117.71 5.5 152.56 84.8 2270.27 6.0 112.78 62.7 2383.04 6.5 76.71 42.6 2459.75 7.0 37.09 20.6 2496.84 7.5 0.00 0.0 2496.84 8.0

CUENCA: MOGAN

TEMPORAL DE 6 HORAS DE DURACION. PERIODO DE RETORNO: 50 AÑOS

APORTACIONES (*1000 m3) CAUDAL (m3/meg.)

HORA	APORTAMAR	CAUDAL	APORACUM
0.0	0.00	0.0	0.00
0.5	14.07	7.8	14.07
1.0	43.65	24.3	57.72
1.5	93.11	51.7	150.84
2.0	136.47	75.8	287.31
2.5	232.91	129.4	520.22
3.0	319.88	177.7	840.10
3.5	307.12	170.6	1147.22
4.0	292.54	162.5	1439.76
4.5	259.83	144.4	1699.59
5.0	226.40	125.8	1925.99
5.5	193.83	107.7	2119.83
6.0	160.72	89.3	2280.54
6.5	127.67	70.9	2408.21
7.0	94.08	52.3	2502.29
7.5	64.76	36.0	2567.05
8.0	37.89	21.1	2604.94
8.5	18.32	10.2	2623.26
9.0	0.00	0.0	2623.26

CUENCA: MOGAN

TEMPORAL DE 8 HORAS DE DURACION. PERIODO DE RETORNO: 50 AÑOS

APORTACIONES (*1000 m3) CAUDAL (m3/seg.)

HORA APORTAMAR CAUDAL APORACUM 0.00 0.00 0.0 0.0 7.6 13.66 13.66 0.5 56.06 42.39 23.6 1.0 90.43 50.2 146.48 1.5 132.53 73.6 279.02 2.0 226.25 125.7 505.27 2.5 310.82 172.7 816.09 3.0 298.60 165.9 1114.69 3.5 284.58 158.1 1399.27 4.0 4.5 253.27 140.7 1652.53 221.37 123.0 1873.90 5.0 5.5 189.92 105.5 2063.82 157.73 87.6 2221.55 6.0 128.66 71.5 2350.21 6.5 102.03 56.7 2452.24 7.0 81.98 45.5 2534.22 7.5 63.21 35.1 2597.43 8.0 8.5 60.51 33.6 2657.93 54.82 30.5 2712.75 9.0 45.30 25.2 2758.05 9.5 36.97 20.5 2795.02 10.0 17.67 9.9 2812.89 10.5 0.00 0.0 2812.89 11.0

TEMPORAL DE L HORAS DE BURACION.

PERIODO DE RETORNO: 50 AÑOS

APORTACIONES (*1000 m3) CAUDAL (m3/meg.)

HORA APORTAMAR CAUDAL APORACUM 0.00 0.0 0.00 0.0 23.67 13.2 23.67 0.5 73.46 40.8 , 97.13 1.0 1.5 133.01 73.9 230.14 156.18 86.8 386.32 2.0 240.02 133.3 626.34 2.5 3.0 323.46 179.7 949.80 3.5 156.40 86.9 1106.19 4.0 0.00 0.0 1106.19 CUENCA: MOGAN

TEMPORAL DE 2 HORAS DE DURACION.

PERIODO DE RETORNO: 50 AROS

APORTACIONES (*1000 m3) CAUDAL (m3/meg.)

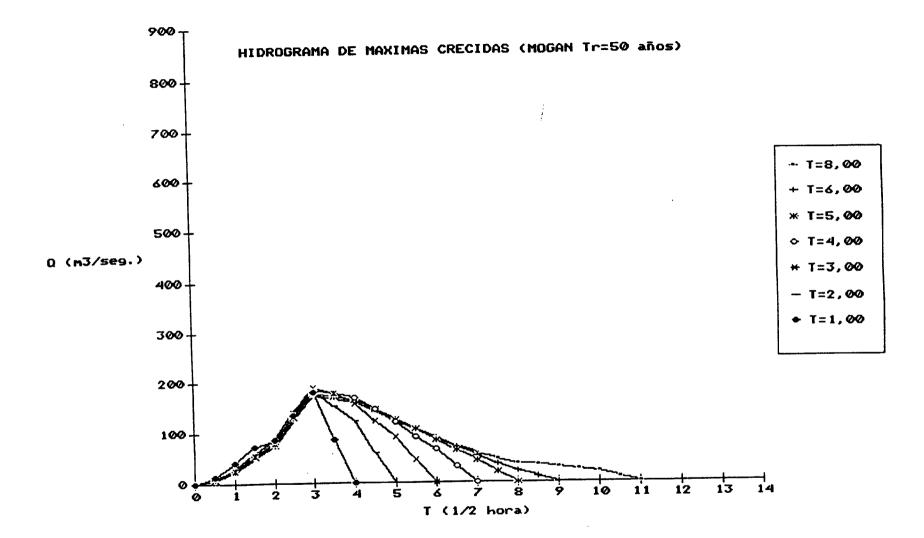
HORA	APORTAMAR	CAUDAL	APORACUM
0.0	0.00	0.0	0.00
0.5	16.23	9.0	16.23
1.0	50.37	28.0	66.60
1.5	107.44	59.7	174.04
2.0	157.47	87.5	331.51
2.5	255.79	142.1	587.30
3.0	328.90	182.7	916.19
3.5	271.83	151.0	1188.02
4.0	221.80	123.2	1409.82
4.5	107.24	59.6	1517.07
5.0	0.00	0.0	1517.07

CUENCA: HOGAN

TEMPORAL DE 3 HORAS DE DURACION.

PERIODO DE RETORNO: 50 AÃOS

APORTACIONES (*1000 m3) CAUDAL (m3/meg.)


CUENCA: MOGAN

TEMPORAL DE 4 HORAS DE DURACION.

PERIODO DE RETORNO: 50 AROS

HORA A	PORTAMAR	CAUDAL	APORACUH
0.0	0.00	0.0	0.00
0.5	14.95	8.3	14.95
1.0	46.38	25.8	61.33
1.5	98.93	55.0	160.26
2.0	145.00	80.6	305.26
2.5	247.58	137.5	552.84
3.0	340.22	189.0	893.06
3.5	317.95	176.6	1211.01
4.0	283.67	157.6	1494.68
4.5	220.82	122.7	1715.50
5.0	164.50	91.4	1880.00
5.5	79.54	44.2	1959.54
6.0	0.00	0.0	1959.54

APORTAMAR	CAUDAL	APORACUM
0.00	0.0	0.00
14.54	8.1	14.54
45.12	25.1	59.67
96.25	53.5	155.91
141.06	78.4	296.98
240.71	133.7	537.69
330.53	183.6	868.21
317.22	176.2	1185.43
302.08	167.8	1487.51
262.36	145.8	1749.87
215.60	119.8	1965.47
164.88	91.6	2130.34
119.22	66.2	2249.56
57.64	32.0	2307.20
0.00	0.0	2307.20
	0.00 14.54 45.12 96.25 141.06 240.71 330.53 317.22 302.08 262.36 215.60 164.88 119.22	14.54 8.1 45.12 25.1 96.25 53.5 141.06 78.4 240.71 133.7 330.53 183.6 317.22 176.2 302.08 167.8 262.36 145.8 215.60 119.8 164.88 91.6 119.22 66.2 57.64 32.0

TEMPORAL DE 5 HORAS DE DURACION.

PERIODO DE RETORNO: 25 AÑOS

APORTACIONES (*1000 m3) CAUDAL (m3/meg.)

HORA APORTAMAR CAUDAL APORACUM 0.00 0.0 0.00 0.0 12.18 6.8 12.18 0.5 37.86 21.0 50.04 1.0 45.0 131.04 81.00 1.5 118.83 66.0 249.87 2.0 203.49 113.1 453.36 2.5 280.59 155.9 733.96 3.0 269.48 149.7 1003.44 3.5 256.78 142.7 1260.22 4.0 228.23 126.8 1488.45 4.5 198.97 110.5 1687.42 5.0 168.22 93.5 1855.64 5.5 134.12 74.5 1989.76 6.0 99.31 55.2 2089.07 6.5 67.60 37.6 2156.68 7.0 32.84 18.2 2189.51 7.5 0.00 0.0 2189.51 8.0

CUENCA: MOGAN

TEMPORAL DE 6 HORAS DE DURACION.

PERIODO DE RETORNO: 25 AÑOS

APORTACIONES (*1000 m3) CAUDAL (m3/meg.)

HORA	APORTAMAR	CAUDAL	APORACUM
0.0	0.00	0.0	0.00
0.5	12.18	6.8	12.18
1.0	37.86	21.0	50.04
1.5	81.00	45.0	131.04
2.0	118.83	66.0	249.87
2.5	203.49	113.1	453.36
3.0	280.59	155.9	733.96
3.5	269.48	149.7	1003.44
4.0	256.78	142.7	1260.22
4.5	228.17	126.8	1488.39
5.0	198.79	110.4	1687.18
5.5	170.29	94.6	1857.47
6.0	141.19	78.4	1998.67
6.5	112.28	62.4	2110.94
7.0	82.75	46.0	2193.69
7.5	57.07	31.7	2250.76
8.0	33.39	18.6	2284.15
8.5	16.22	9.0	2300.37
9.0	0.00	0.0	2300.37

CUENCA: MOGAN

TEMPORAL DE 8 HORAS DE DURACION.

PERIODO DE RETORNO: 25 AÑOS

APORTACIONES (*1000 m3) CAUDAL (m3/meg.)

HORA APORTAMAR CAUDAL APORACUM 0.00 0.0 0.0 0.00 11.83 6.6 11.83 0.5 48.59 36.77 20.4 1.0 78.67 43.7 127.26 1.5 115.40 64.1 242.66 2.0 197.67 109.8 440.33 2.5 272.64 151.5 712.98 3.0 262.01 145.6 974.98 3.5 249.79 138.8 1224.77 4.0 222.40 123.6 1447.17 4.5 194.36 108.0 1641.53 5.0 166.85 92.7 1808.39 5.5 138.57 77.0 1946.95 6.0 113.10 62.8 2060.05 6.5 89.64 49.6 2149.69 7.0 72.05 40.0 2221.74 7.5 55.43 30.8 2277.17 8.0 53.09 29.5 2330.26 8.5 48.15 26.7 2378.41 9.0 39.85 22.1 2418.26 9.5 32.58 18.1 2450.84 10.0 8.8 2466.66 10.5 15.82 0.00 0.0 2466.66 11.0

TEMPORAL DE 1 HORAS DE DURACION.

PERIODO DE RETORNO: 25 AROS

APORTACIONES (*1000 m3) CAUDAL (m3/meg.)

 HORA
 APORTAMAR
 CAUDAL
 APORACUM

 0.0
 0.00
 0.00
 0.00

 0.5
 20.49
 11.4
 20.49

 1.0
 63.71
 35.4
 84.20

 1.5
 115.81
 64.3
 200.01

 2.0
 136.24
 75.7
 336.26

 2.5
 210.25
 116.8
 546.50

 3.0
 285.07
 158.4
 831.57

 3.5
 138.46
 76.9
 970.04

 4.0
 0.00
 0.0
 970.04

CUENCA: HOGAN

TEMPORAL DE 2 HORAS DE DURACION.

PERIODO DE RETORNO: 25 AÑOS

APORTACIONES (*1000 m3) CAUDAL (m3/meg.)

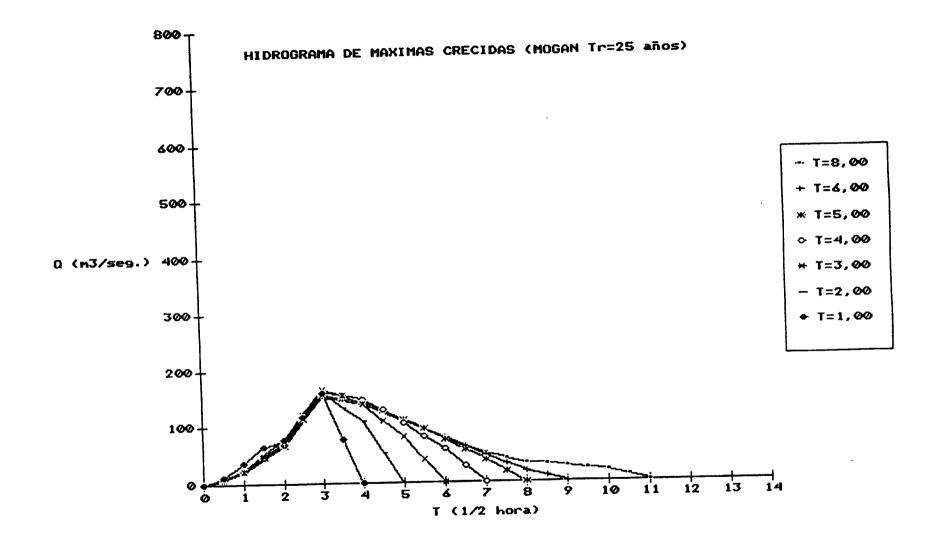
HORA APORTAMAR CAUDAL APORACUM 0.00 0.0 0.00 0.0 14.05 7.8 14.05 0.5 57.74 43.68 24.3 1.0 93.47 51.9 151.20 1.5 137.11 76.2 288.31 2.0 223.59 124.2 511.90 2.5 3.0 288.90 160.5 800.80 3.5 239.12 132.8 1039.91 4.0 195.47 108.6 1235.39 94.95 52.7 1330.34 4.5 0.00 0.0 1330.34 5.0

CUENCA: MOGAN

TEMPORAL DE 3 HORAS DE DURACION.

PERIODO DE RETORNO: 25 AÑOS

APORTACIONES (*1000 m3) CAUDAL (m3/meg.)


CUENCA: MOGAN

TEMPORAL DE 4 HORAS DE DURACION.

PERIODO DE RETORNO: 25 AÑOS

HORA	APORTAMAR	CAUDAL	APORACUM
0.0	0.00	0.0	0.00
0.5	12.94	7.2	12.94
1.0	40.23	22.3	53.17
1.5	86.07	47.8	139.23
2.0	126.25	70.1	265.49
2.5	216.31	120.2	481.79
3.0	298.43	165.8	780.22
3.5	279.09	155.0	1059.31
4.0	249.29	138.5	1308.60
4.5	194.36	108.0	1502.95
5.0	144.98	80.5	1647.93
5.5	70.42	39.1	1718.35
6.0	0.00	0.0	1718.35

HORA	APORTAMAR	CAUDAL	APORACUM
0.0	0.00	0.0	0.00
0.5	12.59	7.0	12.59
1.0	39.13	21.7	51.72
1.5	83.73	46.5	135.45
2.0	122.83	68.2	258.28
2.5	210.31	116.8	468.59
3.0	289.93	161.1	758.52
3.5	278.35	154.6	1036.86
4.0	265.16	147.3	1302.02
4.5	230.46	128.0	1532.49
5.0	189.49	105.3	1721.98
5.5	145.14	80.6	1867.12
6.0	105.07	58.4	1972.19
6.5	51.03	28.4	2023.22
7.0	0.00	0.0	2023.22

TEMPORAL DE 5 HORAS DE DURACION.

PERIODO DE RETORNO: 5 AÑOS

APORTACIONES (*1000 m3) CAUDAL (m3/mag.)

CUENCA: MOGAN

TEMPORAL DE 6 HORAS DE DURACION.

PERIODO DE RETORNO: 5 AÑOS

APORTACIONES (*1000 m3) CAUDAL (m3/seg.)

MODE	APORTAMAR	CAUDAL	APORACUM	HORA	APORTAMAR	CAUDAL	APORACUM
	0.00	0.0		0.0	0.00	0.0	0.00
0.0	7.58	4.2		0.5	7.58	4.2	7.58
0.5				1.0	23.81	13.2	31.39
1.0	23.81	13.2		1.5	51.69	28.7	83.08
1.5	51.69			2.0		42.3	159.22
2.0	76.14	42.3	159.22				291.58
2.5	132.36	73.5	291.58	2.5	132.36	73.5	
3.0			477.27	3.0	185.69	103.2	477.27
3.5			655.83	3.5	178.56	99.2	655.83
4.0				4.0	170.43	94.7	826.26
4.5				4.5	151.70	84.3	977.97
5.0	_	_		5.0	132.10	73.4	1110.07
5.5				5.5	113.46	63.0	1223.53
				6.0	94.05	52.2	1317.57
6.0				6.5	75.12	41.7	1392.69
6.5				7.0	55.40	30.8	1448.09
7.0	45.63	25.4	1424.45				
7.5	22.59	12.5	1447.04	7.5	38.52		
8.0				8.0	22.54	12.5	1509.15
5.0	0.00			8.5	11.16	6.2	1520.31
				9.0	0.00	0.0	1520.31

CUENCA: HOGAN

TEMPORAL DE 8 HORAS DE DURACION.

PERIODO DE RETORNO: 5 AÑOS

HORA	APORTAMAR	CAUDAL	APORACUM
0.0	0.00	0.0	0.00
0.5	7.37	4.1	7.37
1.0	23.12	12.8	30.49
1.5	50.20	27.9	80.69
2.0	73.94	41.1	154.63
2.5	128.57	71.4	283.20
3.0	180.42	100.2	463.62
3.5	173.60	96.4	637.22
4.0	165.78	92.1	803.00
4.5	147.85	82.1	950.86
5.0	129.15	71.7	1080.01
5.5	111.15	61.7	1191.15
6.0	92.28	51.3	1283.44
6.5	75.55	42.0	1358.99
7.0	59.73	33.2	1418.71
7.5	48.06	26.7	1466.78
8.0	36.63	20.4	1503.41
8.5	35.18	19.5	1538.58
9.0	32.06	17.6	1570.64
9.5	26.69	14.8	1597.33
10.0	21.99	12.2	1619.33
10.5	10.89	6.0	1630.21
11.0	0.00	0.0	1630.21

TEMPORAL DE 1 HORAS DE DURACION.

PERIODO DE RETORNO: 5 AÑOS

APORTACIONES (*1000 m3) CAUDAL (m3/meg.)

HORA APORTAMAR CAUDAL APORACUM 0.00 0.0 0.00 0.0 12.76 7.1 12.76 0.5 40.06 22.3 52.82 1.0 74.22 41.2 127.04 1.5 88.06 48.9 215.10 2.0 138.31 76.8 353.41 2.5 192.43 106.9 545.84 3.0 3.5 95.26 52.9 641.09 4.0 0.00 0.0 641.09 CUENCA: MOGAN

TEMPORAL DE 2 HORAS DE DURACION.

PERIODO DE RETORNO: 5 AÑOS

APORTACIONES (*1000 m3) CAUDAL (m3/seg.)

HORA APORTAMAR CAUDAL APORACUM 0.00 0.0 0.00 0.0 8.75 4.9 8.75 0.5 27.47 15.3 36.22 1.0 1.5 59.65 33.1 95.87 87.85 48.8 183.72 2.0 145.73 81.0 329.45 2.5 192.34 106.9 521.79 3.0 160.16 89.0 681.95 3.5 131.95 73.3 813.90 4.0 65.32 36.3 879.22 4.5 0.00 0.0 879.22 5.0

CUENCA: MOGAN

TEMPORAL DE 3 HORAS DE DURACION.

PERIODO DE RETORNO: 5 AÑOS

APORTACIONES (*1000 m3) CAUDAL (m3/eeg.)

CUENCA: HOGAN

TEMPORAL DE 4 HORAS DE DURACION.

PERIODO DE RETORNO: 5 AÑOS

HORA	APORTAMAR C	AUDAL A	PORACUM
0.0	0.00	0.0	0.00
0.5	8.06	4.5	8.06
1.0	25.29	14.1	33.35
1.5	54.92	30.5	88.28
2.0	80.90	44.9	169.17
2.5	140.69	78.2	309.86
3.0	197.48	109.7	507.34
3.5	185.23	102.9	692.57
4.0	166.29	92.4	858.86
4.5	130.49	72.5	989.35
5.0	97.86	54.4	1087.21
5.5	48.44	26.9	1135.65
• • •		0.0	1135.65
6.0	0.00	• • •	•

HORA	APORTAMAR C	AUDAL A	PORACUM
0.0	0.00	0.0	0.00
0.5	7.84	4.4	7.84
1.0	24.61	13.7	32.45
1.5	53.43	29.7	85.88
2.0	78.70	43.7	164.58
2.5	136.79	76.0	301.37
3.0	191.87	106.6	493.24
3.5	184.44	102.5	677.68
4.0	175.99	97.8	853.68
4.5	153.44	85.2	1007.12
5.0	126.47	70.3	1133.59
5.5	97.52	54.2	1231.11
6.0	70.92	39.4	1302.03
6.5	35.11	19.5	1337.14
7.0		0.0	1337.14
, . •			